Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Subcellular localization of the superoxide-forming enzyme in human neutrophils.
B Dewald, … , J T Curnutte, B M Babior
B Dewald, … , J T Curnutte, B M Babior
Published January 1, 1979
Citation Information: J Clin Invest. 1979;63(1):21-29. https://doi.org/10.1172/JCI109273.
View: Text | PDF
Research Article

Subcellular localization of the superoxide-forming enzyme in human neutrophils.

  • Text
  • PDF
Abstract

The subcellular distribution of the superoxide (O2-)-forming enzyme in human neutrophils was investigated. Cells were activated by phorbolmyristate acetate or by opsonized zymosan, and were then fractionated by zonal-rate sedimentation at two different speeds. At high speed, the specific granules were resolved from the azurophils and the membrane fraction, while at low speed, the azurophil granules could be separated from fast-sedimenting particle aggregates. Under both conditions, the major portion of the O-2--forming activity (60--70% of the total) was found to be associated with the membrane fraction which was characterized by the presence of alkaline phosphatase, alkaline phosphodiesterase I, and acid aryl phosphatase. No significant O-2--forming activity was found in either specific or azurophil granules. Some activity was present in the fastest sedimenting fractions which, as shown by electron microscopy, were heterogeneous and contained aggregated material which included membrane fragments. These fractionation results provide strong additional support for the current view that the activable O-2--forming system is localized in the plasma membrane of human neutrophils.

Authors

B Dewald, M Baggiolini, J T Curnutte, B M Babior

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 159 0
PDF 51 5
Scanned page 336 0
Citation downloads 54 0
Totals 600 5
Total Views 605
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts