Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Inhibition of the Bicarbonate Exit Step in Urinary Acidification by a Disulfonic Stilbene
Loren H. Cohen, … , Allan Mueller, Philip R. Steinmetz
Loren H. Cohen, … , Allan Mueller, Philip R. Steinmetz
Published April 1, 1978
Citation Information: J Clin Invest. 1978;61(4):981-986. https://doi.org/10.1172/JCI109023.
View: Text | PDF
Research Article

Inhibition of the Bicarbonate Exit Step in Urinary Acidification by a Disulfonic Stilbene

  • Text
  • PDF
Abstract

Acidification of the luminal solution by the isolated turtle bladder involves H+ secretion by a pump at the luminal membrane. The OH− dissociated in this process reacts with CO2 and forms HCO3− which moves passively out of the cell across the serosal cell membrane. In the present study, this exit step for HCO3− was inhibited by serosal addition of the disulfonic stilbene, SITS, an agent which is thought to bind to a transport protein at the serosal cell membrane. 90 min after serosal addition of 0.5 mM SITS, H+ secretion decreased by > 80%. In contrast, luminal addition of SITS had no effect. During inhibition of H+ secretion by serosal SITS, overall cell pH, measured by the 5, 5-dimethyl-2, 3-oxazolidinedione method, increased from 7.48±0.03 to 7.61±0.02. This increase of 0.13±0.02 pH U was associated with a much larger regional pH increase as judged from the decrement in the attainable pH gradient across the epithelium. After serosal SITS, this gradient was reduced from 2.88±0.06 to 2.09±0.11 pH U. In the absence of evidence for increased H+ permeability or a change in the force of the H+ pump, the gradient decrement of 0.79±0.08 U reflects a similar pH increment on the cytoplasmic side of the pump.

Authors

Loren H. Cohen, Allan Mueller, Philip R. Steinmetz

×

Usage data is cumulative from July 2024 through July 2025.

Usage JCI PMC
Text version 108 1
PDF 69 5
Scanned page 210 0
Citation downloads 42 0
Totals 429 6
Total Views 435
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts