Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (35)

Advertisement

Research Article Free access | 10.1172/JCI108977

Androgen Receptor Content of the Normal and Hyperplastic Canine Prostate

Sydney A. Shain and Robert W. Boesel

Tom Slick Memorial Laboratories, Southwest Foundation for Research and Education, San Antonio, Texas 78284

Find articles by Shain, S. in: JCI | PubMed | Google Scholar

Tom Slick Memorial Laboratories, Southwest Foundation for Research and Education, San Antonio, Texas 78284

Find articles by Boesel, R. in: JCI | PubMed | Google Scholar

Published March 1, 1978 - More info

Published in Volume 61, Issue 3 on March 1, 1978
J Clin Invest. 1978;61(3):654–660. https://doi.org/10.1172/JCI108977.
© 1978 The American Society for Clinical Investigation
Published March 1, 1978 - Version history
View PDF
Abstract

A procedure was developed for measurement of androgen receptors in cytoplasmic extracts of prostates from intact dogs. The protocol utilized exchange saturation analysis at 15°C employing the synthetic androgen R1881 (17β-hydroxy-17α-methylestra-4,9,11-trien-3-one) as the ligand probe and quantitatively detected total cytoplasmic androgen receptor (Rc, androgen-free receptor, and RcA, androgen-occupied receptor) present at the initiation of the assay. This protocol was employed in conjunction with a tissue mince saturation analysis procedure (for quantitation of nuclear androgen receptor) to quantitate total androgen receptor content of normal and hyperplastic prostates obtained from young (2.5- or 4.6-yr old) and aged (12.5-yr old) purebred dogs of known birth date.

The total cytoplasmic androgen receptor content (picomoles per prostate) of hyperplastic prostates was 4.6-fold greater than that of normal prostates. The total nuclear androgen receptor content of hyperplastic prostates (picomoles per prostate measured in crude nuclear preparations) was either 5.0- (4.6-yr-old dogs) or 7.8-fold (2.5-yr-old dogs) greater than that of normal prostates. However, androgen receptor content per cell was identical for hyperplastic and normal canine prostates, with the exception that nuclear androgen receptor was diminished in prostates from 2.5-yr-old dogs. The cell content per gram dry weight was identical for hyperplastic and normal canine prostates. We conclude that canine prostate hyperplasia is characterized by coordinate proliferation of androgen receptor-positive and androgen receptor-negative cells and is not a consequence of increased accumulation of 5α-dihydrotestosterone due to proliferation of androgen receptors per prostate cell.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 654
page 654
icon of scanned page 655
page 655
icon of scanned page 656
page 656
icon of scanned page 657
page 657
icon of scanned page 658
page 658
icon of scanned page 659
page 659
icon of scanned page 660
page 660
Version history
  • Version 1 (March 1, 1978): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (35)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts