Normal and cytochalasin B-treated human granulocytes have been studied to determine some of the interrelationships between phagocytosis-induced respiration and superoxide and hydrogen peroxide formation and release into the extracellular medium by intact cells. By using the scopoletin fluorescent assay to continuously monitor extracellular hydrogen peroxide concentrations during contact of cells with opsonized staphylococci, it was demonstrated that the superoxide scavengers ferricytochrome c and nitroblue tetrazolium significantly reduced the amount of H2O2 released with time from normal cells but did not abolish it. This inhibitory effect was reversed by the simultaneous addition of superoxide dismutase (SOD), whereas the addition of SOD alone increased the amount of detectable H2O2 in the medium. The addition of sodium azide markedly inhibited myeloperoxidase-H2O2-dependent protein iodination and more than doubled H2O2 release, including the residual amount remaining after exposure of the cells to ferricytochrome c, suggesting its origin from an intracellular pool shared by several pathways for H2O2 catabolism.
Richard K. Root, Julia A. Metcalf