Granulocytes collected by reversible adhesion to nylon wool fiber (NWF) function relatively well in standard in vitro tests; however, they have an abnormally shortened survival time in the circulation. Assuming that this rapid disappearance represents clearance and that recognition by phagocytes is important for such clearance, we used an autologous in vitro cell:cell recognition assay to determine whether phagocytes can detect cellular changes induced by exposure of normal granulocytes to NWF. Human granulocytes incubated with NWF 1 h at 37°C, eluted with 20% acid citrate dextrose plasma, and washed stimulated the hexose monophosphate shunt activity of normal granulocytes an average of twofold (193±40% of controls), indicating a recognition response. NWF-induced granulocyte recognition was not dependent on plasma factors or activated complement components but was dependent on the time that the granulocyte was on the NWF and was maximal by 60 min of exposure. After elution from NWF, granulocytes demonstrated resting glucose oxidation rates only slightly higher than normal; however, during the first 20 min of exposure to NWF, granulocytes increased their rate of 14CO2 production from [1-14C]glucose three- to five-fold. Therefore, experiments were performed to determine whether toxic oxygen metabolites produced by NWF-adherent cells might contribute to recognition. The results showed that (a) normal granulocytes exposed to NWF in the presence of scavengers of superoxide anion (superoxide dismutase) or free radicals (ascorbate, mannitol, or benzoate) and washed before assay did not stimulate glucose oxidation of indicator granulocytes; and (b) NWF granulocytes prepared from cells unable to generate high levels of toxic oxygen metabolites, i.e. cells prepared anaerobically or from a patient with chronic granulomatous disease, also failed to stimulate indicator granulocytes. Human granulocytes placed in contact with NWF show an oxidative burst and become recognizable to other phagocytes. Free radical scavengers are effective in minimizing this recognition conferred on NWF-procured granulocytes.
John C. Klock, Thomas P. Stossel
Usage data is cumulative from November 2023 through November 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 157 | 0 |
79 | 16 | |
Figure | 0 | 1 |
Scanned page | 310 | 4 |
Citation downloads | 42 | 0 |
Totals | 588 | 21 |
Total Views | 609 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.