Experiments were designed to analyze the relationship of a single i.v. dose of triiodothyronine (T3), the level of plasma and hepatic nuclear T3 attained, and the tissue response as reflected in increased activity of hepatic mitochondrial alpha-glycerophosphate dehydrogenase (alpha-GPD) and cytosol "malic enzyme" (ME). These studied were carried out in euthyroid rats by varying the dose of T3 injected and the time at which the animals were killed and the enzyme levels measured. The plasma T3 concentration was determined and the fraction of nuclear sites occupied at any time t was calculated from the known plasma:nuclear relationship. As a first step, the analysis was confined to the limiting situation in which all nuclear sites were effectively saturated. The following additional information was required and obtained: A proportional relationship between the half-neutralizing volume of a specific antiserum to malic enzyme and the activity of malic enzyme was established, thus confirming previous reports that the increase in enzyme activity induced by T3 is due to increased enzyme mass. The absolute refractory period immediately after i.v. injection of T3, during which no enzyme response could be detected, was determined. This was shown to be 13.4 h for alpha-GPD and 8.2 h for ME. Lastly, the t1/2 of the enzyme decay after pulse injection of T3 was measured. This was similar for both enzymes, 2.8+/-0.6 (SD) days for alpha-GPD and 2.7+/-0.6 (SD) days for ME. The results of these studies indicated that the extent of hepatic response appears limited by full occupancy of a set of intracellular receptor sites by T3 which is in rapid equilibrium with the plasma hormone pool. The kinetic properties of the receptors, as functionally defined in these studies, resemble those associated with the recently described specific nuclear T3 sites. These data per se are thus compatible with but do not prove a nuclear site of initiation of hormone effect. Thye do allow the development of an internally consistent mathematical model which permits prediction of enzyme response when the receptor sites are fully occupied for a given length of time after the i.v. injection of hormone. A separate series of studies was carried out in thyroidectomized rats. The response characteristics of alpha-GPD were similar to those observed in euthyroid animals. In contrast, however, the early response of ME to pulse injections of T3 was very much reduced in hypothyroid animals as compared to euthryoid animals in which nuclear sites were saturated for comparable periods. These findings raise the possibility that a factor required for the induction of malic enzyme but not alpha-GPD is deficient in the hypothyroid state.
J H Oppenheimer, E Silva, H L Schwartz, M I Surks