Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI108581

Pathogenesis and characterization of hyperglucagonemia in the uremic rat.

D S Emmanouel, J B Jaspan, S F Kuku, A H Rubenstein, A I Katz, and A H Huen

Find articles by Emmanouel, D. in: PubMed | Google Scholar

Find articles by Jaspan, J. in: PubMed | Google Scholar

Find articles by Kuku, S. in: PubMed | Google Scholar

Find articles by Rubenstein, A. in: PubMed | Google Scholar

Find articles by Katz, A. in: PubMed | Google Scholar

Find articles by Huen, A. in: PubMed | Google Scholar

Published November 1, 1976 - More info

Published in Volume 58, Issue 5 on November 1, 1976
J Clin Invest. 1976;58(5):1266–1272. https://doi.org/10.1172/JCI108581.
© 1976 The American Society for Clinical Investigation
Published November 1, 1976 - Version history
View PDF
Abstract

The pathogenesis of hyperglucagonemia and of the alterations in the pattern of circulating immunoreactive glucagon (IRG) associated with renal insufficiency was studied in rats in which a comparable degree of uremia was induced by three different methods, i.e., bilateral nephrectomy, bilateral ureteral ligation, and urine autoinfusion. Nephrectomized and ureteral-ligated rats were markedly hyperglucagonemic (575 +/- 95 pg/ml and 492 +/- 54 pg/ml, respectively), while IRG levels of urine autoinfused animals (208 +/- 35 pg/ml) were similar to those of control rats (180 +/- 26 pg/ml), indicating that uremia per se does not account for the hyperglucagonemia observed in renal failure. Similarly, plasma IRG composition in this group of animals was indistinguishable from that of controls, in which 88.2 +/- 5.9% of total IRG consisted of the 3,500-mol wt fraction. The same component was almost entirely responsible (82.6 +/- 4.1%) for the hyperglucagonemia observed in ligated rats, while it accounted for only 57.6 +/- 5.0% of the circulating IRG in nephrectomized animals. In the latter group, 36.8 +/- 6.6% of total IRG had a mol wt of approximately 9,000, consistent with a glucagon precursor. This peak was present in samples obtained as early as 2 h after renal ablation and its concentration continued to increase with time reaching maximal levels at 24 h. These results confirm that the kidney is a major site of glucagon metabolism and provide evidence that the renal handling of the various circulating IRG components may involve different mechanisms. Thus, the metabolism of the 3,500-mol wt fraction is dependent upon glomerular filtration, while the uptake of the 9,000-mol wt material can proceed in its absence, as long as renal tissue remains adequately perfused. This finding suggests that the 9,000-mol wt component may be handled by peritubular uptake.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1266
page 1266
icon of scanned page 1267
page 1267
icon of scanned page 1268
page 1268
icon of scanned page 1269
page 1269
icon of scanned page 1270
page 1270
icon of scanned page 1271
page 1271
icon of scanned page 1272
page 1272
Version history
  • Version 1 (November 1, 1976): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts