Advertisement
Research Article Free access | 10.1172/JCI108423
Find articles by Jakab, G. in: JCI | PubMed | Google Scholar
Find articles by Green, G. in: JCI | PubMed | Google Scholar
Published June 1, 1976 - More info
Bacterial multiplication associated with virus infections is related to defects in in situ bactericidal (phagocytic) mechanisms of the lung. To determine whether the phagocytic defect was in bacterial ingestion and/or intracellular digestion, mice were infected with a sublethal dose of aerosolized Sendai virus and challenged 7 days later with a finely dispersed aerosol of Staphylococcus aureus. Groups of uninfected and virus-infected mice were sacrificed at 0, 6, 12, and 24 h after challenge, the lungs were perfused with formalin in situ, and the intra- or extracellular location of the bacteria was determined histologically. At 0 h, 49% and 51% of the staphylococci had an intracellular location in virus and nonvirus-infected lungs, respectively. With time, decreasing numbers of staphylococci were observed within the phagocytic cells of nonvirus-infected lungs, mostly as single organisms or in small clusters of less than four. In contrast, in focal area of virus-infected lungs, increasing numbers of phagocytic cells showed clumps of more than 25 bacteria/cell. These data demonstrate that virus-infected suppression of pulmonary antibacterial activity against S. aureus is related primarily to defects in intracellular processing mechanisms.
Images.