Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Effect of renal sympathetic nerve stimulation on proximal water and sodium reabsorption.
E Bell-Reuss, … , D L Trevino, C W Gottschalk
E Bell-Reuss, … , D L Trevino, C W Gottschalk
Published April 1, 1976
Citation Information: J Clin Invest. 1976;57(4):1104-1107. https://doi.org/10.1172/JCI108355.
View: Text | PDF
Research Article Article has an altmetric score of 6

Effect of renal sympathetic nerve stimulation on proximal water and sodium reabsorption.

  • Text
  • PDF
Abstract

The renal responses to sympathetic nerve stimulation were studied in saline-expanded rats. The left kidney was partially denervated by crushing the left greater splanchnic nerve. Then the distal portion of the nerve was stimulated with square wave pulses of 0.5 ms duration, voltage twice threshold, and 1 or 2 Hz frequency while monitoring the compound action potential. Fibers with conduction speeds of 13-17 m-s-1 and of 0.7-1 m-s-1 were identified. Only stimulation of the latter appeared to produce changes in renal Na and water excretion. Whole kidney and individual nephron studies were performed alternating control and nerve stimulation periods. Nerve stimulation produced approximately a 25% reduction of the left kidney urine volume and sodium excretion. Glomerular filtration rate and renal plasma flow remained unchanged. Right kidney Na and water excretion, glomerular filtration rate, and renal plasma flow remained constant. In the left kidney, during nerve stimulation, the tubular fluid to plasma inulin concentration ratio increased significantly in the late proximal tubule. We conclude that the antidiuresis and antinatriuresis seen during sympathetic nerve stimulation were caused by increased sodium and water reabsorption in the proximal tubule, probably mediated by the stimulation of slowly conducting unmyelinated fibers. These responses appeared to be unrelated to systemic or intrarenal hemodynamic changes.

Authors

E Bell-Reuss, D L Trevino, C W Gottschalk

×

Full Text PDF

Download PDF (607.64 KB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 1 policy sources
Referenced in 290 patents
37 readers on Mendeley
See more details