Abstract

The distributions per unit volume of extravascular water (EVLW), blood volume, and blood flow were measured in isolated perfused vertical dog lungs. A steady-state tracer technique was employed using oxygen-15, carbon-11, and nitrogen-13 isotopes and external scintillation counting of the 511-KeV annihilation radiation common to all three radionuclides. EVLW, and blood volume and flow increased from apex to base in all preparations, but the gradient of increasing flow exceeded that for blood and EVLW volumes. The regional distributions of EVLW and blood volume were almost identical. With increasing edema, lower-zone EVLW increased slightly relative to that in the upper zone. There was no change in the distribution of blood volume or flow until gross edema (100% wt gain) occurred when lower zone values were reduced. In four lungs the distribution of EVLW was compared with wet-to-dry ratios from lung biopsies taken immediately afterwards. Whereas the isotopically measured EVLW increased from apex to base, the wet-to-dry weight ratios remained essentially uniform. We concluded that isotopic methods measure only an "exchangeable" water pool whose volume is dependent on regional blood flow and capillary recruitment. Second, the isolated perfused lung can accommodate up to 60% wt gain without much change in the regional distribution of EVLW, volume, or flow.

Authors

T Jones, H A Jones, C G Rhodes, P D Buckingham, J M Hughes

×

Other pages: