Advertisement
Research Article Free access | 10.1172/JCI108249
Find articles by Feldman, D. in: JCI | PubMed | Google Scholar
Find articles by Couropmitree, C. in: JCI | PubMed | Google Scholar
Published January 1, 1976 - More info
Because some nonsteroidal anti-inflammatory drugs (NSAID) induce salt and water retention and exhibit other steroid-like actions, studies were performed to ascertain whether these drugs possess intrinsic mineralocorticoid agonist activity. In vitro competitive binding assays utilizing tissue from adrenalectomized rats demonstrated that some NSAID can displace [3H]-aldosterone from renal cytoplasmic mineralocorticoid receptors. Displacement potency for these sites was in the sequence: aldosterone greater than spironolactone greater than phenylbutazone (PBZ) greater than aspirin (ASA) greater than indomethacin (IDM). Concentration ratios required to obtain significant displacement of [3H]aldosterone were high but clearly within the therapeutic range for PBZ and ASA but not IDM. The analogues oxyphenbutazone (OBZ) and sodium salicylate (SS) were similar in binding activity to PBZ and ASA, respectively. Lineweaver-Burk analysis revealed that the inhibition of [3H]aldosterone binding was competitive in nature. In addition, PBZ was shown to prevent the nuclear binding of [3H]aldosterone. In vivo injection of PBZ and ASA resulted in competition for [3H]aldosterone renal binding comparable to the in vitro studies. Administration of PBZ and OBZ to adrenalectomized rats resulted in significant salt retention whereas ASA and SS did not differ significantly from controls. Salt retention elicited by PBZ and OBZ was inhibited by spironolactone, a competitive mineralocorticoid antagonist. These data suggest that, despite nonsteroidal structures, PBZ and OBZ induce salt retention via a receptor-mediated mineralocorticoid pathway analogous to aldosterone action.