Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Complement and immunoglobulins stimulate superoxide production by human leukocytes independently of phagocytosis.
I M Goldstein, … , H B Kaplan, G Weissmann
I M Goldstein, … , H B Kaplan, G Weissmann
Published November 1, 1975
Citation Information: J Clin Invest. 1975;56(5):1155-1163. https://doi.org/10.1172/JCI108191.
View: Text | PDF
Research Article

Complement and immunoglobulins stimulate superoxide production by human leukocytes independently of phagocytosis.

  • Text
  • PDF
Abstract

Human peripheral blood polymorphonuclear leukocytes, when exposed to appropriate stimuli, generate significant amounts of superoxide anion (O-.2), a highly reactive molecule which is possibly involved in bacterial killing. Since the subcellular localization and mechanism of activation of O-.2 generating systems are unknown, we have investigated superoxide dismutase-inhibitable cytochrome c reduction (attributable to O-.2) by, and lysosomal enzyme release from, normal polymorphonuclear leukocytes and cells rendered incapable of ingesting particles by treatment with cytochalasin B. Neither phagocytosis nor lysosomal degranulation were prerequisites for enhanced O-.2 generation. Cytochalasin B-treated cells exposed to (a) serum-treated zymosan, a C3b receptor stimulus; (b) heat aggregated human IgG, an Fc receptor stimulus; and (c) the complement component, C5a, generated enhanced amounts of O-.2 in a time and concentration-dependent fashion. These cells also responded by releasing lysosomal enzymes, but there was no correlation between the ability of any immune reactant to provoke enzyme release and its ability to stimulate O-.2 generation. The three stimuli also enhanced O-.2 generation by normal (untreated) polymorphonuclear leukocytes, but only serum-treated zymosan and aggregated IgG were capable of provoking lysosomal enzyme release from normal cells. Untreated zymosan and native IgG neither stimulated O-.2 production nor provoked lysomal enzyme release. Since enhanced O-.2 production was stimulated by immune reactants in the absence of phagocytosis, the O-.2 generating system is very likely associated with the external plasma membrane of the polymorphonuclear leukocyte. Leukocyte membrane receptors for complement and immunoglobulins may therefore not only serve in particle recognition but also may initiate biochemical events which accompany phagocytosis and killing.

Authors

I M Goldstein, D Roos, H B Kaplan, G Weissmann

×

Full Text PDF

Download PDF (1.53 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts