Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Wall stress and patterns of hypertrophy in the human left ventricle.
W Grossman, … , D Jones, L P McLaurin
W Grossman, … , D Jones, L P McLaurin
Published July 1, 1975
Citation Information: J Clin Invest. 1975;56(1):56-64. https://doi.org/10.1172/JCI108079.
View: Text | PDF
Research Article Article has an altmetric score of 17

Wall stress and patterns of hypertrophy in the human left ventricle.

  • Text
  • PDF
Abstract

It is generally recognized that chronic left ventricular (LV) pressure overload results primarily in wall thickening and concentric hypertrophy, while chronic LV volume overload is characterized by chamber enlargement and an eccentric pattern of hypertrophy. To assess the potential role of the hemodynamic factors which might account for these different patterns of hypertrophy, we measured LV wall stresses throughout the cardiac cycle in 30 patients studied at the time of cardiac catheterization. The study group consisted of 6 subjects with LV pressure overload, 18 with LV volume overload, and 6 with no evidence of heart disease (control). LV pressure, meridional wall stress (sigman), wall thickness (h), and radius (R) were measured in each patient throughout the cardiac cycle. For patients with pressure overload, LV peak systolic and end diastolic pressures were significantly increased (220 plus or minus 6/23 plus or minus 3 mm Hg) compared to control (117 plus or minus 7/10 plus or minus 1 mm Hg, P less than 0.01 for each). However, peak systolic and end diastolic (sigman) were normal (161 plus or minus 24/23 plus or minus 3 times 10-3 dyn/cm-2) compared to control (151 plus or minus 14/17 plus or minus 2 times 10-3 dyn/cm-2, NS), reflecting the fact that the pressure overload was exactly counterbalanced by increased wall thickness (1.5 plus or minus 0.1 cm for pressure overload vs. 0.8 plus or minus 0.1 cm for control, P less than 0.01). For patients with volume overload, peak systolic (sigman) was not significantly different from control, but end diastolic (sigmam) was consistently higher than normal (41 plus or minus 3 times 10-3 dyn/cm-2 for volume overload, 17 plus or minus 2 times 10-3 dyn/cm-2 for control, P less than 0.01). LV pressure overload was associated with concentric hypertrophy, and an increased value for the ratio of wall thickness to radius (h/R ratio). In contrast, LV volume overload was associated with eccentric hypertrophy, and a normal h/R ratio. These data suggest the hypothesis that hypertrophy develops to normalize systolic but not diastolic wall stress. We propose that increased systolic tension development by myocardial fibers results in fiber thickening just sufficient to return the systolic stress (force per unit cross-sectional area) to normal. In contrast, increased resting or diastolic tension appears to result in gradual fiber elongation or lengthening which improves efficiency of the ventricular chamber but cannot normalize the diastolic wall stress.

Authors

W Grossman, D Jones, L P McLaurin

×

Total citations by year

Year: 2025 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991 1990 1989 1988 1987 1986 1985 1984 1983 1982 1981 1980 1979 1978 1977 1976 Total
Citations: 8 16 18 29 65 79 40 39 42 44 51 55 51 49 52 52 48 42 49 33 33 36 34 41 34 50 41 58 43 41 52 38 25 47 54 35 29 35 24 32 31 31 35 20 11 13 13 6 6 2 1812
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Posted by 3 X users
Referenced in 24 patents
Referenced in 2 clinical guideline sources
736 readers on Mendeley
See more details