Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Determinants of glomerular filtration in experimental glomerulonephritis in the rat.
D A Maddox, … , T M Daugharty, B M Brenner
D A Maddox, … , T M Daugharty, B M Brenner
Published February 1, 1975
Citation Information: J Clin Invest. 1975;55(2):305-318. https://doi.org/10.1172/JCI107934.
View: Text | PDF
Research Article

Determinants of glomerular filtration in experimental glomerulonephritis in the rat.

  • Text
  • PDF
Abstract

Pressures and flows were measured in surface glomerular capillaries, efferent arterioles, and proximal tubules of 22 Wistar rats in the early autologous phase of nephrotoxic serum nephritis (NSN). Linear deposits of rabbit and rat IgG and C3 component of complement were demonstrated in glomerular capillary walls by immunofluorescence microscopy. Light microscopy revealed diffuse proliferative glomerulonephritis, and proteinuria was present. Although whole kidney and single nephron glomerular filtration rate (GFR) in NSN (0.8 plus or minus 0.04 SE2 ml/min and 2 plus or minus 2 nl/min, respectively) remained unchanged from values in 16 weight-matched NORMAL HYDROPENIC control rats (0.8 plus or minus 0.08 and 28 plus or minus 2), important alterations in glomerular dynamics were noted. Mean transcapillary hydraulic pressure difference (deltaP) averaged 41 plus or minus 1 mm Hg in NSN versus 32 plus or minus 1 in controls (P LESS THAN 0.005). Oncotic pressures at the afferent (piA) end of the glomerular capillary were similar in both groups ( 16 mm /g) but increased much less by the efferent end (piE) in NSN (to 29 plus or minus 1 mm Hg) than in controls (33 plus or minus 1, P less than 0.025). Hence, equality between deltaP and piE, denoting filtration pressure equilibrium, obtained in control but not in NSN rats. While glomerular plasma flow rate was slightly higher in NSN (88 plus or minus 8 nl/min) than in controls (76 plus or minus 6, P greater than 0.2), the failure to achieve filtration equilibrium in NSN rats was primarily the consequence of a marked fall in the glomerular capillary ultrafiltration coefficient, Kf, to a mean value of 0.03 nl/(s times mm Hg), considerably lower than that found recently for the normal rat, 0.08 nl/(s times mm Hg). Thus, despite extensive glomerular injury, evidenced morphologically and by the low Kf, GFR remained normal. This maintenance of GFR resulted primarily from increases in deltaP, which tended to increase the net driving force for filtration, and thereby compensate for the reduction in Kf.

Authors

D A Maddox, C M Bennett, W M Deen, R J Glassock, D Knutson, T M Daugharty, B M Brenner

×

Full Text PDF

Download PDF (3.93 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts