Advertisement
Research Article Free access | 10.1172/JCI107762
Department of Surgery, Emory University, School of Medicine, Atlanta, Georgia 30322
Department of Medicine, Emory University, School of Medicine, Atlanta, Georgia 30322
Department of Biochemistry, Emory University, School of Medicine, Atlanta, Georgia 30322
Find articles by Chawla, R. in: JCI | PubMed | Google Scholar
Department of Surgery, Emory University, School of Medicine, Atlanta, Georgia 30322
Department of Medicine, Emory University, School of Medicine, Atlanta, Georgia 30322
Department of Biochemistry, Emory University, School of Medicine, Atlanta, Georgia 30322
Find articles by Rudman, D. in: JCI | PubMed | Google Scholar
Published August 1, 1974 - More info
When 70-80-g male albino rats eat a diet furnishing daily requirement of valine for optimal growth (70 μmol/g) and all other nutrients (“complete diet”), they gain weight at an average rate of 3.0 g/100 g body wt/day. When valine is removed, they lose weight at an average 2.1 g/100 g body wt/day. The growth retardation is improved or corrected by adding valine to the diet, daily weight gain being proportional to dietary valine content over a range of 0-70 μmol/g.
Addition of α-ketoisovaleric acid instead of valine to the valine-free diet also improves or corrects the growth failure. Percent efficiency of α-ketoisovaleric acid as a substitute for valine was calculated as: 100 × (micromole valine per gram diet required to produce specified growth response)/(micromole α-ketoisovaleric acid per gram diet required to produce the same response). Efficiency of the substitution is inversely related to dietary content of the keto analogue, being 80% when diet contains 17.5 μmol/g (molar equivalent of ¼ the daily requirement of valine), and 37% when diet provides 140 μmol/g (molar equivalent of twice the daily requirement of valine).
α-Hydroxyisovaleric acid also substitutes for valine. Efficiency of the substitution at the single ration tested, 70 μmol/g diet, is 45%, similar to that for the keto analogue under the same conditions.
When [1-14C]α-ketoisovaleric acid is injected intravenously, 30-80% of the administered radioactivity is exhaled as 14CO2 within 24 h. This finding suggests that inefficiency of α-ketoisovaleric acid as a substitute for valine results in part from degradation of the keto acid to isobutyric acid by branched chain dehydrogenase-decarboxylase.
Oral administration of neomycin, polymyxin, and bacitracin reduces efficiency of α-ketoisovaleric acid as a substitute for valine by ¼-½. This effect suggests that transamination of the keto acid may be performed in part by gastrointestinal microbes.