Bile acid production in cerebrotendinous xanthomatosis (CTX) is subnormal, yet the activity of cholesterol 7α-hydroxylase, the rate-determining enzyme of bile acid synthesis, is elevated. To explain this discrepancy, bile acid precursors were sought in bile and feces of three CTX subjects. Over 10% of the total sterols excreted in bile and feces consisted of compounds more polar than cholesterol. Chromatographic analysis of the polar fractions in conjunction with gasliquid chromatography (GLC)-mass spectrometry indicated two major constituents, 5β-cholestane-3α,7α,12α,25-tetrol and 5β-cholestane-3α,7α,12α,24ξ,25-pentol. After i.v. injection of [4-14C]cholesterol both bile alcohols were radioactive proving that they were derived from cholesterol. The accumulation of alcohols hydroxylated at C-25 and C-24,25 suggests that decreased bile acid synthesis in CTX results from impaired oxidation of the cholesterol side chain. This finding and the virtual absence of intermediates hydroxylated at C-26 indicate that current views of the major pathway of bile acid synthesis may require revision.
T. Setoguchi, Gerald Salen, G. S. Tint, E. H. Mosbach
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 136 | 2 |
63 | 19 | |
Scanned page | 312 | 3 |
Citation downloads | 46 | 0 |
Totals | 557 | 24 |
Total Views | 581 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.