Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI107619

Sulfhydryl Groups of the Erythrocyte Membrane and their Relation to Glycolysis and Drug-Induced Hemolytic Anemia

Alvin Zipursky, Marlene Stephens, Elizabeth J. Brown, and Per Larsen

Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada

Find articles by Zipursky, A. in: PubMed | Google Scholar

Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada

Find articles by Stephens, M. in: PubMed | Google Scholar

Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada

Find articles by Brown, E. in: PubMed | Google Scholar

Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada

Find articles by Larsen, P. in: PubMed | Google Scholar

Published March 1, 1974 - More info

Published in Volume 53, Issue 3 on March 1, 1974
J Clin Invest. 1974;53(3):805–812. https://doi.org/10.1172/JCI107619.
© 1974 The American Society for Clinical Investigation
Published March 1, 1974 - Version history
View PDF
Abstract

Hemolytic anemia caused by oxidative drugs is thought to result from the oxidation of intracellular and membrane sulfhydryl groups of the erythrocyte. This process is more likely to occur in those erythrocytes in which the intracellular mechanism for reduction of disulfides is abnormal (e.g., glucose-6-phosphate dehydrogenase deficiency). If a membrane sulfhydryl group is critical in the pathogenesis of druginduced hemolytic anemia, it follows that this specific group must be dependent on intracellular reductive mechanisms for maintenance of the reduced state.

This report describes a sulfhydryl group(s), involved in membrane structure, which is (are) dependent on intracellular metabolism for maintenance of the reduced state. It is postulated that this metabolically dependent membrane sulfhydryl group may play a role in the pathogenesis of drug-induced hemolytic anemia.

Membrane sulfhydryl groups were studied by observing the effect of sulfhydryl blocking agents, e.g., N-ethyl-maleimide (NEM), on the recovery of erythrocyte ghosts after osmotic lysis. It was shown that NEM interfered with ghost recovery by reacting with membrane sulfhydryl groups. The concentration of NEM (as determined by [14C] NEM binding) necessary to cause this effect was lower than that necessary to produce changes in osmotic fragility or cation permeability, or to cause Heinz body formation.

In the absence of glucose, these sulfhydryl groups became disulfides, but could be returned to the reduced state by restoring glycolysis or by adding dithiothreitol. Phenylhydrazine hemolytic anemia was induced in pigs, and membrane changes of the type described above occurred early in the pathogenesis of the disease.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 805
page 805
icon of scanned page 806
page 806
icon of scanned page 807
page 807
icon of scanned page 808
page 808
icon of scanned page 809
page 809
icon of scanned page 810
page 810
icon of scanned page 811
page 811
icon of scanned page 812
page 812
Version history
  • Version 1 (March 1, 1974): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts