Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Studies on Mechanisms of Cerebral Edema in Diabetic Comas. EFFECTS OF HYPERGLYCEMIA AND RAPID LOWERING OF PLASMA GLUCOSE IN NORMAL RABBITS
Allen I. Arieff, Charles R. Kleeman
Allen I. Arieff, Charles R. Kleeman
Published March 1, 1973
Citation Information: J Clin Invest. 1973;52(3):571-583. https://doi.org/10.1172/JCI107218.
View: Text | PDF
Research Article Article has an altmetric score of 3

Studies on Mechanisms of Cerebral Edema in Diabetic Comas. EFFECTS OF HYPERGLYCEMIA AND RAPID LOWERING OF PLASMA GLUCOSE IN NORMAL RABBITS

  • Text
  • PDF
Abstract

To investigate the pathophysiology of cerebral edema occurring during treatment of diabetic coma, the effects of hyperglycemia and rapid lowering of plasma glucose were evaluated in normal rabbits. During 2 h of hyperglycemia (plasma glucose=61 mM), both brain (cerebral cortex) and muscle initially lost about 10% of water content. After 4 h of hyperglycemia, skeletal muscle water content remained low but that of brain was normal. Brain osmolality (Osm) (343 mosmol/kg H2O) was similar to that of cerebrospinal fluid (CSF) (340 mosmol/kg), but increases in the concentration of Na+, K+, Cl-, glucose, sorbitol, lactate, urea, myoinositol, and amino acids accounted for only about half of this increase. The unidentified solute was designated “idiogenic osmoles”. When plasma glucose was rapidly lowered to normal with insulin, there was gross brain edema, increases in brain content of water, Na+, K+, Cl- and idiogenic osmoles, and a significant osmotic gradient from brain (326 mosmol/kg H2O) to plasma (287 mosmol/kg). By similarly lowering plasma glucose with peritoneal dialysis, increases in brain Na+, K+, Cl-, and water were significantly less, idiogenic osmoles were not present, and brain and plasma Osm were not different. It is concluded that during sustained hyperglycemia, the cerebral cortex adapts to extracellular hyperosmolality primarily by accumulation of idiogenic osmoles rather than loss of water or gain in solute. When plasma glucose is rapidly lowered with insulin, an osmotic gradient develops from brain to plasma. Despite the brain to plasma osmotic gradient, there is no net movement of water into brain until plasma glucose has fallen to at least 14 mM, at which time cerebral edema occurs.

Authors

Allen I. Arieff, Charles R. Kleeman

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 204 30
PDF 55 52
Figure 0 1
Scanned page 507 32
Citation downloads 60 0
Totals 826 115
Total Views 941
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 1 clinical guideline sources
15 readers on Mendeley
See more details