Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Studies of the control of plasma aldosterone concentration in normal man: I. Response to posture, acute and chronic volume depletion, and sodium loading
Gordon H. Williams, … , Robert G. Dluhy, Richard H. Underwood
Gordon H. Williams, … , Robert G. Dluhy, Richard H. Underwood
Published July 1, 1972
Citation Information: J Clin Invest. 1972;51(7):1731-1742. https://doi.org/10.1172/JCI106974.
View: Text | PDF

Studies of the control of plasma aldosterone concentration in normal man: I. Response to posture, acute and chronic volume depletion, and sodium loading

  • Text
  • PDF
Abstract

The peripheral plasma levels of aldosterone, renin activity (PRA), potassium, corticosterone, cortisol, and in some cases angiotensin II, were measured in normal subjects undergoing postural changes, acute diuretic-induced volume depletion, and alterations in dietary sodium. On a 10 mEq sodium/100 mEq potassium intake, subjects supine for 3 consecutive days had identical diurnal patterns of PRA, angiotensin II, aldosterone, cortisol, and corticosterone, with peaks at 8 a.m. and nadirs at 11 p.m. With an increase in sodium intake to 200 mEq, plasma levels of aldosterone and PRA fell to one-third their previous levels but the diurnal pattern in supine subjects was unchanged and again parallel to that of cortisol and corticosterone. There was no diurnal variation of plasma potassium on either sodium intake in the supine subjects. On a 10 mEq sodium/100 mEq potassium intake, supine 8 a.m. plasma aldosterone (55±7 ng/100 ml) and PRA (886±121 ng/100 ml per 3 hr) increased by 150-200% after subjects were upright for 3 hr. However, even though the patients maintained an upright activity pattern, there was a significant fall in plasma aldosterone to 33±5 ng/100 ml at 11 p.m. Potassium levels varied in a fashion parallel to aldosterone and PRA. Plasma cortisol and corticosterone had a diurnal pattern similar to that found in supine subjects. In response to acute diuretic-induced volume depletion, the nocturnal fall in aldosterone levels did not occur. The 11 p.m. value (102±20 ng/100 ml) and the 8 a.m. value postdiuresis (86±15 ng/100 ml) were both significantly greater than the prediuresis levels. PRA showed a similar altered pattern while potassium levels fell throughout the day. In some but not all studies, changes in plasma aldosterone coincided with changes in plasma cortisol, corticosterone, and/or potassium. However, in all studies, changes in plasma aldosterone were invariably associated with parallel changes in plasma renin activity and/or angiotensin II levels. These findings support the concept that PRA is the dominant factor in the control of aldosterone when volume and/or dietary sodium is altered in normal man.

Authors

Gordon H. Williams, John P. Cain, Robert G. Dluhy, Richard H. Underwood

×

Full Text PDF

Download PDF (1.60 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts