Abstract

The effects of oral ethanol administration on blood glucose and lactate concentrations, lactate inflow and outflow rates, and lactate incorporation into glucose were investigated in eight human volunteers. Lactate incorporation into glucose, lactate turnover, and lactate inflow and outflow rates were determined during an 8 hr constant infusion of 100 μCi of lactate-U-14C. Ethanol was administered by mouth at hourly intervals, 60 ml of bonded whiskey initially and 30 ml/hr thereafter. Blood lactate concentrations increased precipitously after the administration of ethanol, reached a plateau within 120-180 min, and remained constant thereafter despite the continued administration of ethanol. Before ethanol, the lactate turnover rate was 0.76 mmoles/kg per hr ±0.05 (SEM) and lactate inflow and outflow rates were closely balanced. During the administration of ethanol, the lactate inflow rate was unchanged, but the lactate outflow rate was significantly inhibited, decreasing to 50% of the inflow rate. Despite the continued administration of ethanol, equilibrium between lactate inflow and outflow was restored within 120-180 min and coincided temporally with establishment of a constant blood lactate concentration. Lactate oxidation was unaltered by ethanol, but lactate incorporation into glucose was significantly inhibited. Lactate incorporation into glucose was reduced within 30 min of the administration of ethanol, and nadir values were reached within 120-180 min. Lactate incorporation into glucose remained constant thereafter at rates that were only 30% of those observed in the absence of ethanol. The results of these studies indicate that ethanol-induced hyperlacticacidemia is due to decreased lactate disposal rather than increased lactate production.

Authors

Robert A. Kreisberg, W. Crawford Owen, Alan M. Siegal

×

Other pages: