Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Free access | 10.1172/JCI106391

Dihydrotestosterone in prostatic hypertrophy: I. The formation and content of dihydrotestosterone in the hypertrophic prostate of man

Pentti K. Siiteri and Jean D. Wilson

Department of Obstetrics and Gynecology, The University of Texas Southwestern Medical School at Dallas, Dallas, Texas 75235

Department of Biochemistry, The University of Texas Southwestern Medical School at Dallas, Dallas, Texas 75235

Department of Internal Medicine, The University of Texas Southwestern Medical School at Dallas, Dallas, Texas 75235

Find articles by Siiteri, P. in: PubMed | Google Scholar

Department of Obstetrics and Gynecology, The University of Texas Southwestern Medical School at Dallas, Dallas, Texas 75235

Department of Biochemistry, The University of Texas Southwestern Medical School at Dallas, Dallas, Texas 75235

Department of Internal Medicine, The University of Texas Southwestern Medical School at Dallas, Dallas, Texas 75235

Find articles by Wilson, J. in: PubMed | Google Scholar

Published September 1, 1970 - More info

Published in Volume 49, Issue 9 on September 1, 1970
J Clin Invest. 1970;49(9):1737–1745. https://doi.org/10.1172/JCI106391.
© 1970 The American Society for Clinical Investigation
Published September 1, 1970 - Version history
View PDF
Abstract

To explore the relation between androgens and prostatic hypertrophy in man, the concentrations of testosterone, dihydrotestosterone, and androstenedione and the rate of conversion of testosterone to dihydrotestosterone have been measured in normal and hypertrophic prostate tissue. First, a double isotope derivative technique was adapted for the measurement of tissue androgen content in 15 normal and 10 hypertrophic prostates. Although there was no significant difference in the content of androstenedione and testosterone between the two types of tissue, the content of dihydrotestosterone was significantly greater in the hypertrophic tissue (0.60 ±0.10 μg/100 g) than in the normal glands (0.13 ±0.05 μg/100 g). Second, a regional study was performed in three normal prostates and four glands with early hypertrophy, and it was demonstrated that the dihydrotestosterone content was two and three fold greater in the periurethral area where prostatic hypertrophy usually commences than in the outer regions of the gland. Finally, the rate of conversion of testosterone to dihydrotestosterone has been measured under standardized conditions in tissue slices from 4 normal and 20 hypertrophic prostates. There was no significant difference in the rate of dihydrotestosterone formation between the two types of gland (6.0 ±0.8 and 7.8 ±0.5 μμmoles/15 mg of tissue per hr). While the mechanism by which dihydrotestosterone accumulation occurs remains unexplained, it is possible that the local accumulation of dihydrotestosterone may be involved in the pathogenesis of prostatic hypertrophy in man.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1737
page 1737
icon of scanned page 1738
page 1738
icon of scanned page 1739
page 1739
icon of scanned page 1740
page 1740
icon of scanned page 1741
page 1741
icon of scanned page 1742
page 1742
icon of scanned page 1743
page 1743
icon of scanned page 1744
page 1744
icon of scanned page 1745
page 1745
Version history
  • Version 1 (September 1, 1970): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts