Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (42)

Advertisement

Research Article Free access | 10.1172/JCI106298

Effect of alterations in the thyroid state on the intrinsic contractile properties of isolated rat skeletal muscle

Herman K. Gold, James F. Spann Jr., and Eugene Braunwald

1Cardiology Branch, National Heart Institute, Bethesda, Maryland 20014

Find articles by Gold, H. in: PubMed | Google Scholar

1Cardiology Branch, National Heart Institute, Bethesda, Maryland 20014

Find articles by Spann, J. in: PubMed | Google Scholar

1Cardiology Branch, National Heart Institute, Bethesda, Maryland 20014

Find articles by Braunwald, E. in: PubMed | Google Scholar

Published April 1, 1970 - More info

Published in Volume 49, Issue 4 on April 1, 1970
J Clin Invest. 1970;49(4):849–854. https://doi.org/10.1172/JCI106298.
© 1970 The American Society for Clinical Investigation
Published April 1, 1970 - Version history
View PDF
Abstract

Contractile properties of soleus muscles isolated from 31 euthyroid (EU), 20 hyperthyroid (HT), and 18 myxedematous (MY) rats were studied in a myograph. At 100 stimuli/sec maximum isometric tension was essentially identical in EU (17.2 ±0.5 g/mm2) and HT (17.7 ±0.5 g/mm2) muscles, but was significantly depressed in MY muscles (11.5 ±0.7 g/mm2). The rate of tension development was increased in HT (103 ±4.5 g/sec per mm2) as compared to both EU (86.2 ±4.6 g/sec per mm2) and MY (38.4 ±2.2 g/sec per mm2) muscles, while the duration of the active state was shortened in HT (77.1 ±2.3 msec) as compared to EU (105.1 ±1.1 msec) muscles and was prolonged in MY muscles (153.3 ±6.0 msec). The mean rate of isometric relaxation was 26.5 ±4.9 g/mm2 per sec in EU muscles, more rapid in HT muscles (33.1 ±1.3 g/sec per mm2), and slower in MY muscles (16.0 ± g/mm2 per sec). The fusion frequency was greater in HT muscles, averaging 68.5 ±3.6 stimuli/sec compared to EU muscles (38.1 ±1.2 stimuli/sec) and to MY muscles (33.3 ±4.0 stimuli/sec). At 40 stimuli/sec tension averaged 16.4 ±0.8 g/mm2 in EU muscles while at the same frequency tension was reduced in HT muscle, averaging 14.2 ±0.5 g/mm2. All differences were significant (P < 0.01). In conclusion, HT and MY result in profound alterations in the intrinsic contractile properties of skeletal muscle. While tension in HT muscles is maintained in vitro at a stimulus frequency of 100 stimuli/sec, the reduction in duration of active state may lower tension in vivo by preventing complete fusion of contractile events. In MY tension is reduced as a consequence of the lowered intensity of the active state. These changes explain, at least in part, the weakness of muscle activity in both HT and MY.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 849
page 849
icon of scanned page 850
page 850
icon of scanned page 851
page 851
icon of scanned page 852
page 852
icon of scanned page 853
page 853
icon of scanned page 854
page 854
Version history
  • Version 1 (April 1, 1970): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (42)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts