Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Hemoglobin Hiroshima (β143 histidine → aspartic acid): a newly identified fast moving beta chain variant associated with increased oxygen affinity and compensatory erythremia
Howard B. Hamilton, … , Takaoki Miyaji, Susumu Shibata
Howard B. Hamilton, … , Takaoki Miyaji, Susumu Shibata
Published March 1, 1969
Citation Information: J Clin Invest. 1969;48(3):525-535. https://doi.org/10.1172/JCI106010.
View: Text | PDF
Research Article

Hemoglobin Hiroshima (β143 histidine → aspartic acid): a newly identified fast moving beta chain variant associated with increased oxygen affinity and compensatory erythremia

  • Text
  • PDF
Abstract

During a survey for hemoglobinopathies in over 9000 residents of Hiroshima Prefecture, Japan, a fast moving hemoglobin was identified in eight members of three generations in a Japanese family. The abnormal hemoglobin, named Hb Hiroshima, constitutes about 50% of the total hemoglobin in hemolysates from the carriers who have a mild erythremia but are otherwise apparently clinically unaffected. All preparations of Hb Hiroshima have increased affinity for oxygen, by either tonometric or oxygen electrode determinations. At pH 7.0, the oxygen pressure, P50 required to half saturate an unfractionated hemolysate from a carrier was one-half that of Hb A, and the P50 of a purified sample containing no Hb A was one-fourth that of Hb A. The pH dependence of the oxygen equilibrium (Bohr effect) is below normal, as shown by the absolute value of the Bohr effect factor which is about half that of Hb A, in the pH range between 7.0 and 7.4. The Hill constant, n, for Hb Hiroshima between pH 7.0 and 7.4 is 2-2.4, compared to 2.8-3 for Hb A under the same conditions, indicating reduction of, but not complete abolition of heme-heme interaction. Urea dissociation and canine hybridization tests located the biochemical lesion in the beta chain. Fingerprints (Ingram), carboxypeptidase digestion, and amino acid analysis demonstrated that the substitution was at residue 143 in the beta chain, where histidine was replaced by aspartic acid.

Authors

Howard B. Hamilton, Iwao Iuchi, Takaoki Miyaji, Susumu Shibata

×

Full Text PDF

Download PDF (2.33 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts