Kidneys from 20 dogs were dissected into cortical and medullary components and analysed for acid mucopolysaccharide content. Heparitin sulfate accounted for approximately 80% of cortical acid mucopolysaccharide, 10% was chondroitin sulfate B, and 10% was low molecular weight hyaluronic acid. Medullary tissue exhibited a 4- to 5-fold higher concentration of acid mucopolysaccharide than did cortical tissue, and the dominant compound was moderately highly polymerized hyaluronic acid. While chondroitin sulfates A and (or) C were not detected in this study, the presence of minor amounts of these substances could not be excluded. A model experiment indicated that hyaluronic acid retards sodium diffusion, apparently due to its viscous properties rather than its electronegativity.
C. W. Castor, J. A. Greene
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 88 | 0 |
39 | 25 | |
Scanned page | 244 | 4 |
Citation downloads | 47 | 0 |
Totals | 418 | 29 |
Total Views | 447 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.