At sites of injury, macrophages secrete growth factors and proteins that promote tissue repair. While this central role of the macrophage has been well studied, the specific stimuli that recruit macrophages into sites of injury are not well understood. This study examines the role of macrophage inflammatory protein 1alpha (MIP-1alpha), a C-C chemokine with monocyte chemoattractant capability, in excisional wound repair. Both MIP-1alpha mRNA and protein were detectable in murine wounds from 12 h through 5 d after injury. MIP-1alpha protein levels peaked 3 d after injury, coinciding with maximum macrophage infiltration. The contribution of MIP-1alpha to monocyte recruitment into wounds was assessed by treating mice with neutralizing anti-MIP-1alpha antiserum before injury. Wounds of mice treated with anti-MIP-1alpha antiserum had significantly fewer macrophages than control (41% decrease, P < 0. 01). This decrease in wound macrophages was paralleled by decreased angiogenic activity and collagen synthesis. When tested in the corneal micropocket assay, wound homogenates from mice treated with anti-MIP-1alpha contained significantly less angiogenic activity than control wound homogenates (27% positive for angiogenic activity versus 91% positive in the control group, P < 0.01). Collagen production was also significantly reduced in the wounds from anti-MIP-1alpha treated animals (29% decrease, P < 0.05). The results demonstrate that MIP-1alpha plays a critical role in macrophage recruitment into wounds, and suggest that appropriate tissue repair is dependent upon this recruitment.
L A DiPietro, M Burdick, Q E Low, S L Kunkel, R M Strieter
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 246 | 61 |
60 | 45 | |
Citation downloads | 50 | 0 |
Totals | 356 | 106 |
Total Views | 462 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.