B F Scharschmidt, A DeAmicis, P Bacchetti, M J Held
The glomerular permselectivity to polydisperse neutral dextrans was compared in 6 patients with thin membrane nephropathy (TMN) and 10 healthy controls. Despite having normal renal hemodynamics and minimal proteinuria, the patients with TMN had significantly increased fractional clearance of neutral molecules with Stokes radius > 42 A. Conventional theories of glomerular barrier size selectivity cannot fully explain these data since they would predict that our patients would have had nephrotic range proteinuria.
D M Thomas, G A Coles, D F Griffiths, J D Williams
Mice that are homozygous for a targeted disruption of the LDL receptor gene (LDLR-/- mice) were fed a diet that contained 1.25% cholesterol, 7.5% cocoa butter, 7.5% casein, and 0.5% cholic acid. The total plasma cholesterol rose from 246 to > 1,500 mg/dl, associated with a marked increase in VLDL, intermediate density lipoproteins (IDL), and LDL cholesterol, and a decrease in HDL cholesterol. In wild type littermates fed the same diet, the total plasma cholesterol remained < 160 mg/dl. After 7 mo, the LDLR-/- mice developed massive xanthomatous infiltration of the skin and subcutaneous tissue. The aorta and coronary ostia exhibited gross atheromata, and the aortic valve leaflets were thickened by cholesterol-laden macrophages. No such changes were seen in the LDLR-/- mice on a normal chow diet, nor in wild type mice that were fed either a chow diet or the high-fat diet. We conclude that LDL receptors are largely responsible for the resistance of wild type mice to atherosclerosis. The cholesterol-fed LDLR-/- mice offer a new model for the study of environmental and genetic factors that modify the processes of atherosclerosis and xanthomatosis.
S Ishibashi, J L Goldstein, M S Brown, J Herz, D K Burns
Glucose has been reported to increase the de novo synthesis of diacylglycerol (DAG) and translocate and activate protein kinase C (PKC) in rat adipocytes. Presently, we examined the major subcellular site of PKC translocation/activation in response to glucose-induced DAG. Glucose rapidly increased DAG content and PKC enzyme activity in microsomes, but not in plasma membranes or other membranes, during a 30-min treatment of rat adipocytes. This glucose-induced increase in microsomal DAG was attended by increases in immunoreactive PKC alpha, beta, and epsilon. Glucose-induced activation of DAG/PKC signaling in microsomes was not associated with a change in the translocation of Glut-4 transporters from microsomes to the plasma membrane, a biological response that is known to be stimulated by agonists, e.g., phorbol esters, which increase DAG/PKC signaling in plasma membranes, as well as in microsomes. In conclusion, an increase in de novo phospholipid synthesis, as occurs during glucose treatment of rat adipocytes, primarily activates DAG/PKC signaling in microsomes; moreover, this signaling response and biological consequences thereof may differ from those of agonists that primarily stimulate DAG/PKC signaling in the plasma membrane.
R V Farese, M L Standaert, T P Arnold, K Yamada, K Musunuru, H Hernandez, H Mischak, D R Cooper
We measured stimulant-induced changes of exocytosis that are associated with increases in Cl secretion (i.e., short circuit current, ISC, in microA/cm2) and apical (ap) Cl permeability (PCl) and basolateral (bl) K permeability (PK) (both in cm/s) in T84 monolayers. PCl and PK were measured by permeabilizing the bl or ap membrane with nystatin. PCl was also measured with a fluorescent dye 6-methoxy-N-(3-sulfopropyl)quinolinium (SPQ). A noninvasive and sensitive method (release of 35SO4-labeled glycosaminoglycan [GAG], a fluid-phase marker of Golgi-derived vesicles) was used to measure exocytosis at both ap and bl membranes. At rest, ISC = 3.6, PK = 0.8 x 10(-6), PCl = 2.1 x 10(-6) with SPQ and 2.4 x 10(-6) electrically, and there was constitutive GAG secretion (i.e., exocytosis) to both ap and bl sides (bl > 2 x ap). Carbachol (C) increased: ISC (delta = 18.6), PK (6.5x), PCl (1.8-2.9x), and exocytosis to both ap (2.2-3.5x) and bl (2.0-3.0x) membranes. Forskolin (F) increased ISC (delta = 29), PCl (5.5-11x) and ap exocytosis (1.5-2x), but had no effect on PK or bl exocytosis. Synergistic effects on ISC occurred when C was added to F-treated cells but not vice versa, even though the characteristic effects of F+C on PCl, PK, and/or GAG secretion were identical to those exhibited when stimulants were added individually. Cl secretion results from coordinated activation of channels at ap and bl membranes, and exocytosis may play a role in these events.
M E Huflejt, R A Blum, S G Miller, H P Moore, T E Machen
Brain natriuretic peptide (BNP) is a cardiac hormone that occurs predominantly in the ventricle. To study the roles of BNP in chronic cardiovascular regulation, we isolated mouse BNP cDNA and genomic clones, and generated transgenic mice with elevated plasma BNP concentration. The mouse BNP gene was organized into three exons and two introns. Two BNP mRNA species were identified, which were generated by the alternative mRNA splicing. The ventricle was a major site of BNP production in mice. Mouse preproBNP was a 121- (or 120-) residue peptide, and its COOH-terminal 45-residue peptide was the major storage form in the heart. Transgenic mice carrying the human serum amyloid P component/mouse BNP fusion gene were generated so that the hormone expression is targeted to the liver. In the liver of these mice, considerable levels of BNP mRNA and peptide were detected, reaching up to 10-fold greater than in the ventricle. These animals showed 10- to 100-fold increase in plasma BNP concentration accompanied by elevated plasma cyclic GMP concentration, and had significantly lower blood pressure than their nontransgenic littermates. The present study demonstrates that these mice provide a useful model system with which to assess the roles of BNP in cardiovascular regulation and suggests the potential usefulness of BNP as a long-term therapeutic agent.
Y Ogawa, H Itoh, N Tamura, S Suga, T Yoshimasa, M Uehira, S Matsuda, S Shiono, H Nishimoto, K Nakao
The role of cytosolic free Ca2+ ([Ca2+]i) in hypoxic injury was investigated in rat proximal tubules. [Ca2+]i was measured using fura-2 and cell injury was estimated with propidium iodide (PI) in individual tubules using video imaging fluorescence microscopy. [Ca2+]i increased from approximately 170 to approximately 390 nM during 5 min of hypoxia. This increase preceded detectable cell injury as assessed by PI and was reversible with reoxygenation. 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA; 100 microM) reduced [Ca2+]i under basal conditions (approximately 80 nM) and during hypoxia (approximately 120 nM) and significantly attenuated hypoxic injury. When [Ca2+]i and hypoxic cell injury were studied concurrently in the same individual tubules, the 10 min [Ca2+]i rise correlated significantly with subsequent cell damage observed at 20 min. 2 mM glycine did not block the rise in [Ca2+]i, yet protected the tubules from hypoxic injury. These results indicate that in rat proximal tubules, hypoxia induces an increase of [Ca2+]i which occurs before cell damage. The protective effect of BAPTA supports a role for [Ca2+]i in the initiation of hypoxic proximal tubule injury. The glycine results, however, implicate calcium-independent mechanisms of injury and/or blockade of calcium-mediated processes of injury such as activation of phospholipases or proteases.
A Kribben, E D Wieder, J F Wetzels, L Yu, P E Gengaro, T J Burke, R W Schrier
The hypothesis that sleep deprivation depresses immune function was tested in 20 adults, selected on the basis of their normal blood chemistry, monitored in a laboratory for 7 d, and kept awake for 64 h. At 2200 h each day measurements were taken of total leukocytes (WBC), monocytes, granulocytes, lymphocytes, eosinophils, erythrocytes (RBC), B and T lymphocyte subsets, activated T cells, and natural killer (NK) subpopulations (CD56/CD8 dual-positive cells, CD16-positive cells, CD57-positive cells). Functional tests included NK cytotoxicity, lymphocyte stimulation with mitogens, and DNA analysis of cell cycle. Sleep loss was associated with leukocytosis and increased NK cell activity. At the maximum sleep deprivation, increases were observed in counts of WBC, granulocytes, monocytes, NK activity, and the proportion of lymphocytes in the S phase of the cell cycle. Changes in monocyte counts correlated with changes in other immune parameters. Counts of CD4, CD16, CD56, and CD57 lymphocytes declined after one night without sleep, whereas CD56 and CD57 counts increased after two nights. No changes were observed in other lymphocyte counts, in proliferative responses to mitogens, or in plasma levels of cortisol or adrenocorticotropin hormone. The physiologic leukocytosis and NK activity increases during deprivation were eliminated by recovery sleep in a manner parallel to neurobehavioral function, suggesting that the immune alterations may be associated with biological pressure for sleep.
D F Dinges, S D Douglas, L Zaugg, D E Campbell, J M McMann, W G Whitehouse, E C Orne, S C Kapoor, E Icaza, M T Orne
The interaction between nitric oxide (NO) and cyclooxygenase (COX) was studied in a rabbit model of renal inflammation, the ureteral obstructed hydronephrotic kidney (HNK). Ex vivo perfusion of the HNK but not the control kidney (e.g., unobstructed contralateral kidney, CLK), led to a time-dependent release of nitrite (NO2-), a breakdown product of NO. Stimulation of the HNK with bradykinin (BK) evoked a time-dependent increase in prostaglandin E2 (PGE2) production. NG-monomethyl-L-arginine (L-NMMA), which blocks the activity of both constitutive and inducible nitric oxide synthase (cNOS and iNOS), aminoguanidine, a recently described selective iNOS inhibitor, dexamethasone, or cycloheximide abolished the release of NO2- and attenuated the exaggerated BK-induced PGE2 production. This supports the existence of iNOS and COX-2 in the HNK. In the CLK, BK elicited release of both NO2- and PGE2 but this did not augment with time. L-NMMA but not aminoguanidine, dexamethasone, or cycloheximide attenuated NO2- and PGE2 release indicative of the presence of constitutive but not inducible NOS or COX. The current study suggests that the endogenous release of NO from cNOS in the CLK activates a constitutive COX resulting in optimal PGE2 release by BK. In addition, in the HNK, NO release from iNOS activates the induced COX resulting in markedly increased release of proinflammatory prostaglandin. The broader implication of this study is that the cyclooxygenase isozymes are potential receptor targets for nitric oxide.
D Salvemini, K Seibert, J L Masferrer, T P Misko, M G Currie, P Needleman
In order to assess the combined and separate effects of pancreas and kidney transplant on whole-body protein metabolism, 9 insulin-dependent diabetic-uremic patients (IDDUP), 14 patients after combined kidney-pancreas transplantation (KP-Tx), and 6 insulin-dependent diabetic patients with isolated kidney transplant (K-Tx), were studied in the basal postabsorptive state and during euglycemic hyperinsulinemia (study 1). [1-14C]Leucine infusion and indirect calorimetry were utilized to assess leucine metabolism. The subjects were studied again with a combined infusion of insulin and amino acids, given to mimic postprandial amino acid levels (study 2). In the basal state, IDDUP demonstrated with respect to normal subjects (CON): (a) higher free-insulin concentration (17.8 +/- 2.8 vs. 6.8 +/- 1.1 microU/ml, P < 0.01) (107 +/- 17 vs. 41 +/- 7 pM); (b) reduced plasma leucine (92 +/- 9 vs. 124 +/- 2 microM, P < 0.05), branched chain amino acids (BCAA) (297 +/- 34 vs. 416 +/- 10 microM, P < 0.05), endogenous leucine flux (ELF) (28.7 +/- 0.8 vs. 39.5 +/- 0.7 mumol.m-2.min-1, P < 0.01) and nonoxidative leucine disposal (NOLD) (20.7 +/- 0.2 vs. 32.0 +/- 0.7 mumol.m-2. min-1, P < 0.01); (c) similar leucine oxidation (LO) (8.0 +/- 0.1 vs. 7.5 +/- 0.1 mumol.m-2.min-1; P = NS). Both KP-Tx and K-Tx patients showed a complete normalization of plasma leucine (116 +/- 5 and 107 +/- 9 microM), ELF (38.1 +/- 0.1 and 38.5 +/- 0.9 mumol.m-2.min-1), and NOLD (28.3 +/- 0.6 and 31.0 +/- 1.3 mumol.m-2.min-1) (P = NS vs, CON). During hyperinsulinemia (study 1), IDDUP showed a defective decrease of leucine (42% vs. 53%; P < 0.05), BCAA (38% vs. 47%, P < 0.05), ELF (28% vs. 33%, P < 0.05), and LO (0% vs. 32%, P < 0.05) with respect to CON. Isolated kidney transplant reverted the defective inhibition of ELF (34%, P = NS vs. CON) of IDDUP, but not the inhibition of LO (18%, P < 0.05 vs. CON) by insulin. Combined kidney and pancreas transplanation normalized all kinetic parameters of insulin-mediated protein turnover. During combined hyperinsulinemia and hyperaminoacidemia (study 2), IDDUP showed a defective stimulation of NOLD (27.9 +/- 0.7 vs. 36.1 +/- 0.8 mumol.m-2.min-1, P < 0.01 compared to CON), which was normalized by transplantation (44.3 +/- 0.8 mumol.m-2.min-1).
L Luzi, A Battezzati, G Perseghin, E Bianchi, I Terruzzi, D Spotti, S Vergani, A Secchi, E La Rocca, G Ferrari
Interleukin-1 (IL-1), a cytokine produced by bone marrow cells and bone cells, has been implicated in the pathogenesis of postmenopausal osteoporosis because of its potent stimulatory effects on bone resorption in vitro and in vivo. To investigate whether IL-1 plays a direct causal role in post ovariectomy bone loss, 6-mo-old ovariectomized rats were treated with subcutaneous infusions of IL-1 receptor antagonist (IL-1ra), a specific competitor of IL-1, for 4 wk, beginning either at the time of surgery or 4 wk after ovariectomy. The bone density of the distal femur was measured non invasively by dual-energy X-ray absorptiometry. Bone turnover was assessed by bone histomorphometry and by measuring serum osteocalcin, a marker of bone formation, and the urinary excretion of pyridinoline cross-links, a marker of bone resorption. Ovariectomy caused a rapid increase in bone turnover and a marked decrease in bone density which were blocked by treatment with 17 beta estradiol. Ovariectomy also increased the production of IL-1 from cultured bone marrow cells. Ovariectomy induced-bone loss was significantly decreased by IL-1ra treatment started at the time of ovariectomy and completely blocked by IL-1ra treatment begun 4 wk after ovariectomy. In both studies IL-1ra also decreased bone resorption in a manner similar to estrogen, while it had no effect on bone formation. In contrast, treatment with IL-1ra had no effect on the bone density and the bone turnover of sham-operated rats, indicating that IL-1ra specifically blocked estrogen-dependent bone loss. In conclusion, these data indicate that IL-1, or mediators induced by IL-1, play an important causal role in the mechanism by which ovariectomy induces bone loss in rats, especially following the immediate post ovariectomy period.
R B Kimble, J L Vannice, D C Bloedow, R C Thompson, W Hopfer, V T Kung, C Brownfield, R Pacifici
Cytokines have been proposed as inducers of beta-cell damage in human insulin-dependent diabetes mellitus via the generation of nitric oxide (NO). This concept is mostly based on data obtained in rodent pancreatic islets using heterologous cytokine preparations. The present study examined whether exposure of human pancreatic islets to different cytokines induces NO and impairs beta-cell function. Islets from 30 human pancreata were exposed for 6-144 h to the following human recombinant cytokines, alone or in combination: IFN-gamma (1,000 U/ml), TNF-alpha (1,000 U/ml), IL-6 (25 U/ml), and IL-1 beta (50 U/ml). After 48 h, none of the cytokines alone increased islet nitrite production, but IFN-gamma induced a 20% decrease in glucose-induced insulin release. Combinations of cytokines, notably IL-1 beta plus IFN-gamma plus TNF-alpha, induced increased expression of inducible NO synthase mRNA after 6 h and resulted in a fivefold increase in medium nitrite accumulation after 48 h. These cytokines did not impair glucose metabolism or insulin release in response to 16.7 mM glucose, but there was an 80% decrease in islet insulin content. An exposure of 144 h to IL-1 beta plus IFN-gamma plus TNF-alpha increased NO production and decreased both glucose-induced insulin release and insulin content. Inhibitors of NO generation, aminoguanidine or NG-nitro-L-arginine, blocked this cytokine-induced NO generation, but did not prevent the suppressive effect of IL-1 beta plus IFN-gamma plus TNF-alpha on insulin release and content. In conclusion, isolated human islets are more resistant to the suppressive effects of cytokines and NO than isolated rodent islets. Moreover, the present study suggests that NO is not the major mediator of cytokine effects on human islets.
D L Eizirik, S Sandler, N Welsh, M Cetkovic-Cvrlje, A Nieman, D A Geller, D G Pipeleers, K Bendtzen, C Hellerström
High blood pressure is one of the major risk factors for atherosclerosis. In this study, we examined the effects of pressure on cell proliferation and DNA synthesis in cultured rat vascular smooth muscle cells. Pressure without shear stress and stretch promotes cell proliferation and DNA synthesis in a pressure-dependent manner. Pressure-induced DNA synthesis was inhibited significantly by the phospholipase C (PLC) inhibitor 2-nitro-4-carboxyphenyl-N,N-diphenylcarbamate, the protein kinase C inhibitor H-7, 1-(5-isoquinolinylsulfonyl)-2-methyl-piperazine, staurosporine, and the tyrosine kinase inhibitor ([3,4,5-trihydroxyphenyl]methylene)propanedinitrile. To clarify whether activation of PLC and calcium mobilization are involved in pressure-induced DNA synthesis, production of 1,4,5-inositol trisphosphate (IP3) and intracellular Ca2+ was measured. Pure pressure increased IP3 and intracellular Ca2+ in a pressure-dependent manner. The increases in both IP3 and intracellular Ca2+ were inhibited significantly by 2-nitro-4-carboxyphenyl-N,N-diphenylcarbamate. This study demonstrates a novel cellular mechanism whereby pressure regulates DNA synthesis in vascular smooth muscle cells, possibly via activation of PLC and protein kinase C.
K Hishikawa, T Nakaki, T Marumo, M Hayashi, H Suzuki, R Kato, T Saruta
A panel of retinoid compounds (tretinoin, isotretinoin, acitretin, and RO13-1470) were tested for inhibitory activity against Kaposi's sarcoma cell (KSC) cultures in vitro. Tretinoin was found to be the most effective retinoid tested, inhibiting the growth of KSC in vitro while having no effect on the expression of interleukin-6 and basic fibroblast growth factor, two important cytokines involved in KSC growth. Tretinoin also did not appear to downregulate the expression of receptors for these two cytokines. At low concentrations (10(-9) M), acitretin and tretinoin selectively inhibited growth of early passage KSC. At higher concentrations (10(-6)-10(-5) M), retinoid treatment induced a pattern of DNA degradation and morphological changes in KSC characteristic of apoptosis (programmed cell death). The inhibitory activity of tretinoin on KSC growth was decreased if human serum (but not fetal calf serum) was present in the growth medium, and partially restored by removal of serum lipids. These data suggest that retinoids possess potential as therapeutic agents in Kaposi's sarcoma.
J Corbeil, E Rapaport, D D Richman, D J Looney
Heparin inhibits the migration and proliferation of arterial smooth muscle cells and modifies the extracellular matrix. These effects may be the result of heparin's effects on proteinases that degrade the matrix. We have previously reported that heparin inhibits the induction of tissue-type plasminogen activator and interstitial collagenase mRNA. We have investigated the possibility that heparin affects other members of the matrix metalloproteinase family. Phorbol ester increased the levels of mRNA of collagenase, 92-kD gelatinase and stromelysin as well as the synthesis of these proteins. These effects were inhibited by heparin, but not by other glycosaminoglycans, in a dose-dependent manner. The induction of these matrix metalloproteinases was also inhibited by staurosporine and pretreatment with phorbol ester indicating the involvement of the protein kinase C pathway. In contrast, the 72-kD gelatinase was expressed constitutively and was not affected by phorbol ester or heparin. Tissue inhibitor of metalloproteinase-1 was expressed constitutively and was slightly increased by phorbol ester. It was not affected by heparin. Thus, heparin inhibits the production of four proteinases (tissue plasminogen activator, collagenase, stromelysin and 92-kD gelatinase) that form an interdependent system capable of degrading all the major components of the extracellular matrix.
R D Kenagy, S T Nikkari, H G Welgus, A W Clowes
Glycogen storage disease (GSD) type 1a is an autosomal recessive inborn error of metabolism caused by a deficiency in microsomal glucose-6-phosphatase (G6Pase), the key enzyme in glucose homeostasis. Southern blot hybridization analysis using a panel of human-hamster hybrids showed that human G6Pase is a single-copy gene located on chromosome 17. To correlate specific defects with clinical manifestations of this disorder, we identified mutations in the G6Pase gene of GSD type 1a patients. In the G6Pase gene of a compound heterozygous patient (LLP), two mutations in exon 2 of one allele and exon 5 of the other allele were identified. The exon 2 mutation converts an arginine at codon 83 to a cysteine (R83C). This mutation, previously identified by us in another GSD type 1a patient, was shown to have no detectable phosphohydrolase activity. The exon 5 mutation in the G6Pase gene of LLP converts a glutamine codon at 347 to a stop (Q347SP). This Q347SP mutation was also detected in all exon 5 subclones (five for each patient) of two homozygous patients, KB and CB, siblings of the same parents. The predicted Q347SP mutant G6Pase is a truncated protein of 346 amino acids, 11 amino acids shorter than the wild type G6Pase of 357 residues. Site-directed mutagenesis and transient expression assays demonstrated that G6Pase-Q347SP was devoid of G6Pase activity. G6Pase is an endoplasmic reticulum (ER) membrane-associated protein containing an ER retention signal, two lysines (KK), located at residues 354 and 355. We showed that the G6Pase-K355SP mutant containing a lysine-355 to stop codon mutation is enzymatically active. Our data demonstrate that the ER protein retention signal in human G6Pase is not essential for activity. However, residues 347-354 may be required for optimal G6Pase catalysis.
K J Lei, C J Pan, L L Shelly, J L Liu, J Y Chou
Somatostatin (Sms) and its agonist analogues inhibit the secretory activities of endocrine and neural cells. Recent studies have suggested that Sms has significant immunomodulatory properties. In this study, we examine the effects of two Sms octapeptide analogues on the inflammatory reaction in vivo. BIM 23014 (Somatulin) and Sandostatin were administered to male Sprague-Dawley rats subject to carrageenin-induced aseptic inflammation, at doses of 2-10 micrograms/rat, given either systemically or locally. Animals were killed 7 h after the induction of the inflammation, and the inflammatory exudates were aspirated and quantitated in terms of volume and leukocyte concentration. Sms analogues, administered via either route, significantly reduced the volume and the leukocyte concentration of the exudate in a time- and dose-dependent fashion. In corroboration of these, immunohistochemical evaluation of the levels of local inflammatory mediators, such as immunoreactive (Ir) TNF-alpha, Irsubstance P, and Ircorticotropin-releasing hormone, was inhibited significantly by Sms analogue treatment. These findings suggest that Sms analogues have significant antiinflammatory effects in vivo, associated with suppression of proinflammatory cytokines and neuropeptides. Furthermore, these data suggest that Sms agonists may be useful in the control of inflammatory reaction.
K Karalis, G Mastorakos, G P Chrousos, G Tolis
The diabetes (db) gene is a recessive obesity mutation in the mouse capable of producing diabetes only through interaction with heretofore undefined modifiers in the genetic background of certain inbred strains. Here we identify the genetic map locations of androgen and estrogen sulfotransferase genes important in maintaining the balance of active sex steroids in the liver. The Std locus encoding dehydroepiandrosterone sulfotransferase was mapped to proximal Chromosome 7, and the Ste locus encoding estrogen sulfotransferase was mapped to Chromosome 5. The db mutation in the diabetes-susceptible C57BL/KsJ strain aberrantly regulated mRNA transcript levels from these two loci. Hepatic Ste mRNA transcripts were increased from undetectable levels in normal males and females to high levels in db/db mice of both sexes. An anomalous suppression of Std transcription was observed in db/db females, but not in normal females. These reciprocal changes in mRNA concentrations in mutant females were reflected by an induction of a high affinity estrogen sulfotransferase activity and a concomitant loss of dehydroepiandrosterone sulfotransferase activity. These db gene-elicited effects were specific for the sex steroid sulfotransferases since other potential sex steroid metabolizing enzymes (phenol sulfotransferase, sex steroid sulfohydrolase, and UDP-glucuronyltransferase) were unaffected. These aberrant changes would virilize hepatic metabolism in females by increasing the ratio of active androgens to estrogens. In human females, non-insulin-dependent diabetes mellitus often develops when visceral obesity and hyperinsulinemia are associated with hyperandrogenization. This study demonstrates that background modifier genes interacting deleteriously with an obesity mutation are not necessarily defective alleles. Rather, some are functional genes whose regulation has been altered by pleiotropic effects of the obesity gene.
E H Leiter, H D Chapman
Macrophage- and smooth muscle cell (SMC)-derived foam cells are typical constituents of human atherosclerotic lesions. At least three receptor systems have been characterized that could be involved in the development of foam cells: alpha 2-macroglobulin receptor/LDL receptor-related protein (alpha 2 MR/LRP), scavenger receptor, and LDL receptor. We studied the expression of these receptors in human atherosclerotic lesions with in situ hybridization and immunocytochemistry. An abundant expression of alpha 2MR/LRP mRNA and protein was found in SMC and macrophages in both early and advanced lesions in human aortas. alpha 2MR/LRP was also present in SMC in normal aortas. Scavenger receptor mRNA and protein were expressed in lesion macrophages but no expression was found in lesion SMC. LDL receptor was absent from the lesion area but was expressed in some aortas in medial SMC located near the adventitial border. The results demonstrate that (a) alpha 2MR/LRP is, so far, the only lipoprotein receptor expressed in lesions SMC in vivo; (b) scavenger receptors are expressed only in lesion macrophages; and (c) both receptors may play important roles in the development of human atherosclerotic lesions.
J Luoma, T Hiltunen, T Särkioja, S K Moestrup, J Gliemann, T Kodama, T Nikkari, S Ylä-Herttuala
Eosinophils are prominent in bullous pemphigoid (BP), and proteases secreted from these and other inflammatory cells may induce disruption of the basement membrane. We used in situ hybridization and immunohistochemistry to localize the sites of 92-kD gelatinase expression in BP lesions. In all samples (20/20), a strong signal for gelatinase mRNA was detected only in eosinophils and was most pronounced where these cells accumulated at the floor of forming blisters. No other cells were positive for enzyme mRNA. Both eosinophils and neutrophils, however, contained immunoreactive 92-kD gelatinase indicating that active expression occurred only in eosinophils. Degranulated eosinophils were also seen near blisters, and as demonstrated by gelatin zymography, immunoblotting, and ELISA, 92-kD gelatinase protein was prominent in BP blister fluid. No other gelatinolytic activity was specifically detected in BP fluid, and only small amounts of 92-kD gelatinase were present in suction blister fluids. As demonstrated in vitro, 92-kD gelatinase cleaved the extracellular, collagenous domain of recombinant 180-kD BP autoantigen (BP180, BPAG2, HD4, type XVII collagen), a transmembrane molecule of the epidermal hemidesmosome. Our results suggest that production and release 92-kD gelatinase by eosinophils contributes significantly to tissue damage in BP.
M Ståhle-Bäckdahl, M Inoue, G J Guidice, W C Parks
Focal adhesion sites were observed in cultured endothelial cells by tandem scanning confocal microscopy and digitized image analysis, techniques that provide real-time images of adhesion site area and topography in living cells. Image subtraction demonstrated that in the presence of unidirectional steady laminar flow (shear stress [tau] = 10 dyn/cm2) a substantial fraction of focal adhesion sites remodeled in the direction of flow. In contrast, focal adhesions of control (no flow) cells remodeled without preferred direction. In confluent monolayers subjected to shear stresses of 10 dyn/cm2, cells began to realign in the direction of flow after 7-9 h. This was accompanied by redistribution of intracellular stress fibers, alignment of individual focal adhesion sites, and the coalescence of smaller sites resulting in fewer, but larger, focal adhesions per cell. Cell adhesion, repeatedly calculated in the same cells as a function of the areas of focal contact and the separation distances between membrane and substratum, varied by < 10% during both short (30 min), or prolonged (< or = 24 h), periods of exposure to flow. Consistent with these measurements, the gains and losses of focal adhesion area as each site remodeled were approximately equivalent. When the glass substratum was coated with gelatin, rates of remodeling were inhibited by 47% during flow (tau = 10 dyn/cm2). These studies: (a) reveal the dynamic nature of focal adhesion; (b) demonstrate that these sites at the ablumenal endothelial membrane are both acutely and chronically responsive to frictional shear stress forces applied to the opposite (lumenal) cell surface; and (c) suggest that components of the focal adhesion complex may be mechanically responsive elements coupled to the cytoskeleton.
P F Davies, A Robotewskyj, M L Griem
The antigen processing requirements for urushiol, the immunogen of poison ivy (Toxicodendron radicans), were tested by presentation of urushiol to cultured human urushiol-responsive T cells. Urushiol was added to antigen-presenting cells (APC) either before or after fixation with paraformaldehyde. Three distinct routes of antigen processing were detected. CD8+ and CD4+ T cells, which were dependent upon processing, proliferated if urushiol was added to APC before fixation, but did not proliferate when urushiol was added to APC after fixation. Processing of urushiol for presentation to CD8+ T cells was inhibited by azide, monensin, and brefeldin A. This suggests that urushiol was processed by the endogenous pathway. In contrast, presentation of urushiol to CD4+ T cells was inhibited by monensin but not by brefeldin A. This was compatible with antigen processing by the endosomal (exogenous) pathway. Finally, certain CD8+ T cells recognized urushiol in the absence of processing. These cells proliferated in response to APC incubated with urushiol after fixation. Classification of contact allergens by antigen processing pathway may predict the relative roles of CD4+ and CD8+ cells in the immunopathogensis of allergic contact dermatitis.
R S Kalish, J A Wood, A LaPorte
Transforming growth factor-beta 1 (TGF-beta 1) has been implicated in mediating smooth muscle cell (SMC) growth after vascular injury. Studies examining TGF-beta-induced growth of cultured SMC have identified only modest mitogenic effects which are largely dependent on autocrine production of platelet-derived growth factor-AA (PDGF-AA). Recent studies have suggested, however, that TGF-beta also may have delayed growth effects independent of PDGF-AA. The aims of the present studies were to examine the effects of TGF-beta on chronic growth responses of cultured SMC. Results demonstrated that TGF-beta elicited a delayed growth response (24 fold increase in 3H-TdR incorp. from 48-72 h) and enhanced SMC production of PDGF-AA (eightfold increase at 24 h). Neutralizing antibodies to PDGF-AA, however, inhibited only 10-40% of delayed TGF-beta-induced growth. Co-treatment with TGF-beta transiently delayed epidermal growth factor (EGF)-, basic fibroblast growth factor (bFGF)-, or PDGF-BB-induced entry into S phase but enhanced the delayed growth responses to these growth factors by 16.0-, 5.8-, or 4.2-fold, respectively. Neutralizing antibodies to PDGF-AA had no effect on these synergistic responses and exogenous PDGF-AA did not increase growth responses to EGF, bFGF, or PDGF-BB. In summary, TGF-beta induces marked delayed growth responses, alone and in combination with EGF, bFGF or PDGF-BB, that are largely independent of PDGF-AA.
G A Stouffer, G K Owens
Intestinal epithelial cells rest on a fibroblast sheath. Thus, factors produced by these fibroblasts may influence epithelial function in a paracrine fashion. We examined modulation of intestinal epithelial function by one such fibroblast product, scatter factor/hepatocyte growth factor (HGF/SF). This effect was studied in vitro by using model T84 intestinal epithelial cells. When applied to confluent T84 monolayers, HGF/SF attenuates transepithelial resistance to passive ion flow in a dose-dependent manner (maximum fall at 300 ng/ml, 28% control monolayer resistance, P < 0.001, ED50 of 1.2 nM), t1/2 of 20 h. This functional effect of HGF/SF and distribution of its receptor, c-met, are polarized to the basolateral membranes of T84 intestinal epithelial cells. HGF/SF effects on resistance are not attributable to altered transcellular resistance (opening of Cl- and/or basolateral K+ channels), cytotoxicity, or enhanced cell proliferation; they therefore represent specific regulation of paracellular tight junction resistance. Analysis with biochemically purified rodent HGF/SF and Madin-Darby canine kidney cells reveals that effects on paracellular tight junctions also occur in other nontransformed epithelia. Binding of HGF/SF to its receptor in T84 intestinal epithelial cells is accompanied by tyrosine phosphorylation of the receptor. Because loosening of intercellular junctions between cells could facilitate separation, spreading, and migration of epithelial cells during physiologic processes such as wound resealing, we determined the effects of HGF/SF on intestinal epithelial wound resealing using our previously published in vitro model (Nusrat, A., C. Delp, and J. L. Madara. 1992. J. Clin. Invest. 89:1501-1511). HGF/SF markedly enhanced wound closure (> 450% increase in rate, P < 0.001) by influencing the migratory and spreading response in not only cells adjoining the wound but also cells many positions removed from the wound. We thus speculate that HGF/SF may serve as an important cytokine that influences epithelial parameters such as transepithelial resistance and wound resealing. Further pharmacological approaches to manipulate HGF/SF signaling pathways may provide novel therapeutic strategies to enhance repair of intestinal epithelial erosions/ulcerations.
A Nusrat, C A Parkos, A E Bacarra, P J Godowski, C Delp-Archer, E M Rosen, J L Madara
Corticotropin-releasing hormone (CRH), one of the primary regulators of the hypothalamic-pituitary-adrenal (HPA) axis, exhibits abnormal regulation in pathologic states such as depression and anorexia nervosa. Analysis of the role of CRH in regulation of the HPA axis would be facilitated by the creation of animal models in which CRH gene structure and function could be manipulated. We have determined the DNA sequence of the mouse CRH gene. Using a highly sensitive reverse transcription-polymerase chain reaction method, we have found expression of CRH mRNA in adrenal, ovary, testis, gut, heart, anterior pituitary, lung, and spleen, in addition to cerebral cortex and hypothalamus. Within the spleen, CRH mRNA is localized specifically to T-lymphocytes. We mapped the chromosomal location of mouse CRH via interspecific mouse backcrosses to chromosome 3, which is not the site of any naturally occurring mutations consistent with CRH deficiency. Because of this, we inactivated a CRH allele in mouse embryonic stem (ES) cells by homologous recombination with a mutant mouse CRH gene lacking the entire coding region of preproCRH. Mice chimeric for each of two ES clones with an inactivated CRH allele are being used to generate animals with complete CRH deficiency.
L J Muglia, N A Jenkins, D J Gilbert, N G Copeland, J A Majzoub
TNF-alpha induces changes in endothelial cell functions, such as upregulation of tissue factor, resulting in endothelial procoagulant activity which may play a role in disseminated intravascular coagulation. The procoagulant activity of TNF-alpha-stimulated endothelial cell monolayers was studied in a human ex vivo native (nonanticoagulated) blood flow system using the three thrombin inhibitors recombinant hirudin, Ro 46-6240, and heparin. Under venous blood flow conditions (shear rate 65 s-1) recombinant hirudin, Ro 46-6240, and heparin inhibited fibrin deposition on the endothelial cells by 50% at concentrations of 14, 28, and 412 ng/ml, respectively. The highest tested concentrations of the thrombin inhibitors reduced the postchamber fibrinopeptide A levels from 713 +/- 69 to < 70 ng/ml. Surprisingly, even at relatively high inhibitor concentrations, some local fibrin deposits were found on TNF-alpha-stimulated cells, suggesting that some endothelial cells possess higher procoagulant activity than others. Therefore, the surface expression pattern of tissue factor, the primary initiator of coagulation in this system, was examined by immunogold-silver staining. The results showed that the tissue factor density on the cell surface varied strongly among TNF-alpha-stimulated endothelial cells. Using TNF receptor-selective agonistic mutants of TNF-alpha, it was demonstrated further that the heterogenous surface expression of tissue factor was mediated entirely by the 55-kD TNF receptor and did not involve the 75-kD TNF receptor. We conclude that in this system TNF-alpha induces heterogenous tissue factor expression which may lead to a high local thrombin concentration, such that even in the presence of thrombin inhibitors focal fibrin deposition occurs.
D Kirchhofer, T B Tschopp, P Hadváry, H R Baumgartner
Soluble fiber consistently lowers plasma total and low density lipoprotein (LDL)-cholesterol concentrations in humans and various animal models including the hamster; however, the mechanism of this effect remains incompletely defined. We performed studies to determine the activity of dietary psyllium on hepatic 7 alpha-hydroxylase, 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase and LDL receptor expression in the hamster. In animals fed a cholesterol-free semisynthetic diet containing 7.5% cellulose (avicel) as a fiber source, substitution of psyllium for avicel increased hepatic 7 alpha-hydroxylase activity and mRNA levels by 3-4-fold. Comparable effects on 7 alpha-hydroxylase expression were observed with 1% cholestyramine. Psyllium also increased hepatic 7 alpha-hydroxylase activity and mRNA in animals fed a diet enriched with cholesterol and triglyceride. Activation of 7 alpha-hydroxylase was associated with an increase in hepatic cholesterol synthesis that was apparently not fully compensatory since the cholesterol content of the liver declined. Although dietary psyllium did not increase hepatic LDL receptor expression in animals fed the cholesterol-free, very-low-fat diet, it did increase (or at least restore) receptor expression that had been downregulated by dietary cholesterol and triglyceride. Thus, 7.5% dietary psyllium produced effects on hepatic 7 alpha-hydroxylase and LDL metabolism that were similar to those of 1% cholestyramine. Induction of hepatic 7 alpha-hydroxylase activity by dietary psyllium may account, in large part, for the hypocholesterolemic effect of this soluble fiber.
J D Horton, J A Cuthbert, D K Spady
There is evidence that in certain situations the expressed antibody repertoire is dominated by small subsets of V gene segments. They include fetal, CD5+, and autoantibody-forming B cells as well as low grade B cell malignancies. For instance, inside the V kappa III family of approximately 10 members, only 3 (humkv325, 328, and Vg) are used recurrently for autoantibody production. However, the significance of this recurrence is difficult to interpret without a clear vision of the actual repertoire in normal subjects. To address this, we have sequenced and compared two sets of rearranged V kappa III genes generated by cDNA PCR amplification from a normal newborn, a normal adult, and from CD5+ B cells of the same adult donor. The results show that: (a) only four V kappa III gene segments are used by neonatal and total adult B cells (humkv325, humkv328, Vg, and kv305), humkv325 being overexpressed in both repertoires; (b) there is no significant difference in terms of V kappa III gene usage between the adult and newborn repertoires; (c) regarding the junction regions, there is a favored use of the most 5' JK gene segments (Jk1-Jk2); approximately 20% of the newborn and adult junction sequences was characterized by one or two additional codons, most probably resulting from a nontemplate addition of nucleotides; (d) adult clones, in contrast to most newborn clones, show sequence divergences from prototype sequences with patterns which suggest antigen-driven diversity; (e) regarding the adult CD5+ B cell library, it is most probable that the 78 clones analyzed derived from no more than nine different VK-JK rearrangements. Humkv325 is used by at least six of them, and most of the expressed V genes were in exact or very near germline configuration. Collectively these results suggest that the expressed antibody V kappa III repertoire in the adult represents only a fraction of the potential genetic information and that it resembles the preimmune repertoire of the neonate. The data, which also suggest that the adult peripheral blood CD5+ B cell population may be dominated by a small number of B cell clones, are discussed with regards to the V kappa III usage in pathological situations.
J C Weber, G Blaison, T Martin, A M Knapp, J L Pasquali
Previous studies in our laboratory demonstrated messenger RNA for bone morphogenetic protein-2a in human calcified plaque, suggesting that arterial calcification is a regulated process, similar to osteogenesis. To further test this hypothesis, we have isolated and cloned a subpopulation of cells from bovine aortic media that show osteoblastic potential. These novel cells are primarily distinguished from smooth muscle cells by expression of a surface marker preliminarily identified as a modified form of the ganglioside sialyl-lactosylceramide (GM3). Osteoblastic potential was indicated by high levels of alkaline phosphatase and collagen I, expression of osteopontin and osteonectin (SPARC), and production of bone-specific osteocalcin and hydroxyapatite. Cultures of these cells were stimulated to form increased numbers of calcium-mineral-producing nodules by the oxysterol 25-hydroxycholesterol as well as by transforming growth factor-beta 1, both known to be present in atherosclerotic lesions. The stimulation of calcifying vascular cells in the artery wall by these two factors suggests a possible mechanism for the colocalization of calcification with atherosclerosis in vivo.
K E Watson, K Boström, R Ravindranath, T Lam, B Norton, L L Demer
By using a sandwich ELISA, soluble human IL-6 receptor (sIL-6 R) levels were measured in the sera of 20 healthy children and of 25 patients with systemic juvenile rheumatoid arthritis (JRA). In patients with systemic JRA, serum sIL-6 R levels (114.6 +/- 37.7 ng/ml) were significantly lower (P < 0.01) than those of healthy children (161.2 +/- 45.5 ng/ml). Serum sIL-6 R levels were negatively correlated (r = -0.610, P < 0.001) with serum IL-6 levels measured with the B9 cells. The serum IL-6/sIL-6 R complex was detected using an ELISA based on a monoclonal antibody to IL-6 for capture and on a monoclonal antibody to human sIL-6 R for detection. Healthy controls had little, if any, detectable serum IL-6/sIL-6 R complex (OD 0.024 +/- 0.027), while the majority of patients with systemic JRA presented measurable serum IL-6/sIL-6 R complex (OD 0.492 +/- 0.546). IL-6 levels estimated in the circulating IL-6/sIL-6 R complexes were in the range of nanograms per milliliter and approximately 20-fold higher than those measured by the B9 cells. Since serum C-reactive protein concentrations were much more correlated with serum levels of IL-6/sIL-6 R complexes (r = 0.713, r2 = 0.51, P < 0.0001) than with the serum IL-6 levels measured with the B9 cells (r = 0.435, r2 = 0.19, P = 0.05), the large quantities of serum IL-6 present in IL-6/sIL-6 R complexes appear to be biologically relevant in vivo, at least as far as the induction by IL-6 of acute phase protein production.
F De Benedetti, M Massa, P Pignatti, S Albani, D Novick, A Martini
The superoxide-forming NADPH oxidase of human phagocytes is composed of membrane-bound and cytosolic proteins which, upon cell activation, assemble on the plasma membrane to form the active enzyme. Patients suffering from chronic granulomatous disease (CGD) are defective in one of the following components: p47-phox and p67-phox, residing in the cytosol of resting phagocytes, and gp91-phox and p22-phox, constituting the membrane-bound cytochrome b558. In an X-linked CGD patient we identified a novel missense mutation predicting an Asp-->Gly substitution at residue 500 of gp91-phox, associated with normal amounts of nonfunctional cytochrome b558 in the patient's neutrophils. In PMA-stimulated neutrophils and in a cell-free translocation assay with neutrophil membranes and cytosol, the association of the cytosolic proteins p47-phox and p67-phox with the membrane fraction of the patient was strongly disturbed. Furthermore, a synthetic peptide mimicking domain 491-504 of gp91-phox inhibited NADPH oxidase activity in the cell-free assay (IC50 about 10 microM), and the translocation of p47-phox and p67-phox in the cell-free translocation assay. We conclude that residue 500 of gp91-phox resides in a region critical for stable binding of p47-phox and p67-phox.
J H Leusen, M de Boer, B G Bolscher, P M Hilarius, R S Weening, H D Ochs, D Roos, A J Verhoeven
Metabolic acidosis often leads to loss of body protein due mainly to accelerated protein breakdown in muscle. To identify which proteolytic pathway is activated, we measured protein degradation in incubated epitrochlearis muscles from acidotic (NH4Cl-treated) and pair-fed rats under conditions that block different proteolytic systems. Inhibiting lysosomal and calcium-activated proteases did not reduce the acidosis-induced increase in muscle proteolysis. However, when ATP production was also blocked, proteolysis fell to the same low level in muscles of acidotic and control rats. Acidosis, therefore, stimulates selectively an ATP-dependent, nonlysosomal, proteolytic process. We also examined whether the activated pathway involves ubiquitin and proteasomes (multicatalytic proteinases). Acidosis was associated with a 2.5- to 4-fold increase in ubiquitin mRNA in muscle. There was no increase in muscle heat shock protein 70 mRNA or in kidney ubiquitin mRNA, suggesting specificity of the response. Ubiquitin mRNA in muscle returned to control levels within 24 h after cessation of acidosis. mRNA for subunits of the proteasome (C2 and C3) in muscle were also increased 4-fold and 2.5-fold, respectively, with acidosis; mRNA for cathepsin B did not change. These results are consistent with, but do not prove that acidosis stimulates muscle proteolysis by activating the ATP-ubiquitin-proteasome-dependent, proteolytic pathway.
W E Mitch, R Medina, S Grieber, R C May, B K England, S R Price, J L Bailey, A L Goldberg
Stimulation of T cells with antibodies directed towards the T cell receptor complex results in the activation of mitogen-associated protein kinase (MAPK). Two pathways have been described in other cell types that can lead to MAPK activation. One of these pathways involves the activation of Ras, leading to the activation of Raf-1, and the subsequent activation of MEK (MAPK or ERK kinase). The contribution of this pathway in T cells for anti-CD3 or phorbol myristate acetate (PMA)-mediated MAPK activation was examined. We detected the kinase activities of Raf-1 and MEK towards their substrates (MEK for Raf-1 and MAPK for MEK) in this pathway leading to the activation of MAPK. Stimulation of the T cells with either anti-CD3 antibody or PMA resulted in a rapid activation of both Ras and Raf-1. MEK activity towards kinase-active or -inactive recombinant MAPK also increased upon stimulation. In addition, both MAPK and p90rsk were activated in these cells. We suggest that activation of MAPK and the subsequent activation of ribosomal S6 kinase (p90rsk) occurs by the Ras/Raf-1/MEK cascade in T lymphocytes stimulated by ligation of the T cell receptor complex.
R A Franklin, A Tordai, H Patel, A M Gardner, G L Johnson, E W Gelfand
To determine the potential contribution of endothelin (ET) to modulation of high pulmonary vascular resistance in the normal fetus, we studied the effects of BQ 123, a selective ET-A receptor antagonist, and sarafoxotoxin S6c (SFX), a selective ET-B receptor agonist, in 31 chronically prepared late gestation fetal lambs. Brief intrapulmonary infusions of BQ 123 (0.1-1.0 mcg/min for 10 min) caused sustained increases in left pulmonary artery flow (Qp) without changing main pulmonary artery (MPA) and aortic (Ao) pressures. In contrast, BQ 123 did not change vascular resistance in a regional systemic circulation (the fetal hindlimb). To determine whether big-endothelin-1 (big-ET-1)-induced pulmonary vasoconstriction is mediated by ET-A receptor stimulation, we studied the effects of big-ET-1 with or without pretreatment with BQ 123. BQ 123 (0.5 mcg/min for 10 min) blocked the rise in total pulmonary resistance caused by big-ET-1. CGS 27830 (100 mcg/min for 10 min), an ET-A and -B receptor antagonist, did not change basal tone but blocked big-ET-1-induced pulmonary vasoconstriction. Brief and prolonged intrapulmonary infusion of SFX (0.1 mcg/min for 10 min) increased Qp twofold without changing MPA or Ao pressures. Nitro-L-arginine (L-NA), a selective endothelium-derived nitric oxide (EDNO) antagonist, blocked vasodilation caused by BQ 123 and SFX. We conclude that: (a) BQ 123 causes sustained fetal pulmonary vasodilation, but did not change vascular resistance in the fetal hindlimb; (b) Big-ET-1-induced pulmonary vasoconstriction may be mediated through ET-A receptor stimulation; and (c) ET-B receptor stimulation causes pulmonary vasodilation through EDNO release. These findings support the hypothesis that endothelin may play a role in modulation of high basal pulmonary vascular resistance in the normal fetus.
D D Ivy, J P Kinsella, S H Abman
In this study we examined the potential inhibition by interferon-gamma (IFN gamma) of the early stages of low density lipoprotein (LDL) oxidation mediated by human peripheral blood mononuclear cells (PBMC) and monocyte-derived macrophages (MDM) in Ham's F-10 medium supplemented with physiological amounts of L-tryptophan (Trp). We assessed LDL oxidation by measuring the consumption of LDL's major antioxidant (i.e., alpha-tocopherol) and targets for oxidation (cholesteryllinoleate and cholesterylarachidonate), together with the accumulation of cholesterylester hydroperoxides and the increase in relative electrophoretic mobility of the lipoprotein particle. Exposure of PBMC or MDM to IFN gamma induced the degradation of extracellular Trp with concomitant accumulation of kynurenine, anthranilic and 3-hydroxyanthranilic acid (3HAA) in the culture medium. Formation of 3HAA, but neither Trp degradation nor formation of kynurenine and anthranilic acid, was inhibited by low amounts of diphenylene iodonium (DPI) in a concentration-dependent manner. In contrast to oxidative Trp metabolism, exposure of human PBMC or MDM to IFN gamma failed to induce degradation of arginine, and nitrite was not detected in the cell supernatant, indicating that nitric oxide synthase was not induced under these conditions. Incubation of LDL in Trp-supplemented F-10 medium resulted in a time-dependent oxidation of the lipoprotein that was accelerated in the presence of PBMC or MDM but inhibited strongly in the presence of both cells and IFN gamma, i.e., when Trp degradation and formation of 3HAA were induced. In contrast, when IFN gamma was added to PBMC or MDM in F-10 medium that was virtually devoid of Trp, inhibition of cell-accelerated LDL oxidation was not observed. Exogenous 3HAA added to PBMC or purified monocytes in the absence of IFN gamma also strongly and in a concentration-dependent manner inhibited LDL oxidation. Selective inhibition of IFN gamma-induced formation of 3HAA by DPI caused reversion of the inhibitory action of this cytokine on both PBMC- and MDM-mediated LDL oxidation. These results show that IFN gamma treatment of human PBMC or MDM in vitro attenuates the extent of LDL oxidation caused by these cells, and indicate that Trp degradation with formation of 3HAA is a major contributing factor to this inhibitory activity.
S Christen, S R Thomas, B Garner, R Stocker
Several lines of evidence indicate that calcium deficiency is associated with cellular defects in many tissues and organs. Owing to the large in vivo gradient between ionized extra- and intracellular Ca2+ concentrations ([Ca2+]i), it is generally recognized that the prevailing circulating Ca2+ does not significantly affect resting cytosolic Ca2+. To probe the consequences of hypocalcemia on [Ca2+]i, a model of chronic hypocalcemia secondary to vitamin D (D) deficiency was used. Hepatocytes were isolated from livers of hypocalcemic D-deficient, of normocalcemic D3-repleted, or of normal control rats presenting serum Ca2+ of 0.78 +/- 0.02, 1.24 +/- 0.03, or 1.25 +/- 0.01 mM, respectively (P < 0.0001). [Ca2+]i was measured in cell couplets using the fluorescent probe Fura-2. Hepatocytes of normocalcemic D3-repleted and of normal controls exhibited similar [Ca2+]i of 227 +/- 10 and 242 +/- 9 nM, respectively (NS), whereas those of hypocalcemic rats had significantly lower resting [Ca2+]i (172 +/- 10 nM; P < 0.0003). Stimulation of hepatocytes with the alpha 1-adrenoreceptor agonist phenylephrine illicited increases in cytosolic Ca2+ leading to similar [Ca2+]i and phosphorylase a (a Ca(2+)-dependent enzyme) activity in all groups but in contrast to normocalcemia, low extracellular Ca2+ was often accompanied by a rapid decay in the sustained phase of the [Ca2+]i response. When stimulated with the powerful hepatic mitogen epidermal growth factor (EGF), hepatocytes isolated from hypocalcemic rat livers responded with a blunted maximal [Ca2+]i of 237.6 +/- 18.7 compared with 605.2 +/- 89.9 nM (P < 0.0001) for their normal counterparts, while the EGF-mediated DNA synthesis response was reduced by 50% by the hypocalcemic condition (P < 0.03). Further studies on the possible mechanisms involved in the perturbed [Ca2+]i homeostasis associated with chronic hypocalcemia revealed the presence of an unchanged plasma membrane Ca2+ ATPase but of a significant decrease in agonist-stimulated Ca2+ entry as indicated using Mn2+ as surrogate ion (P < 0.03). Our data, thus indicate that, in rat hepatocytes, the in vivo calcium status significantly affects resting [Ca2+]i, and from this we raise the hypothesis that this lower than normal [Ca2+]i may be linked, in calcium disorders, to inappropriate cell responses mediated through the calcium signaling pathway as illustrated by the response to phenylephrine and EGF.
M Gascon-Barré, P Haddad, S J Provencher, S Bilodeau, F Pecker, S Lotersztajn, S Vallières
The liver plays a key regulatory role in cholesterol metabolism. Two proteins are central in this role; the LDL receptor and 3-hydroxy-3-methylglutaryl CoA reductase (HMG CoA reductase), the rate-limiting enzyme in cholesterol biosynthesis. In the current investigation, we have used a sensitive nonradioactive method to study the regulation of LDL receptor and HMG CoA reductase mRNA levels in liver biopsy samples and freshly isolated mononuclear leukocytes from 13 patients who underwent cholecystectomy for gallstones. mRNA copy numbers were determined by PCR amplification of reverse-transcribed RNA using synthetic RNA as an internal standard. Incorporation of digoxigenin-11-dUTP during amplification allowed direct detection and quantitation of mRNA levels by chemiluminescence. These experiments showed that the average number of LDL receptor mRNA molecules in liver (21 +/- 3 x 10(4)/micrograms of RNA) and mononuclear leukocytes (24 +/- 3 x 10(4)/micrograms of RNA) are indistinguishable, whereas the number of HMG CoA reductase molecules in liver (107 +/- 15 x 10(4)/micrograms of RNA) is smaller than that in mononuclear leukocytes (158 +/- 21 x 10(4)/micrograms of RNA, P < 0.05). These numbers correspond to an average of 1-6 copies of LDL receptor mRNA and 5-42 copies of HMG CoA reductase mRNA per cell. There was a significant correlation between the numbers of LDL receptor (P = 0.0005) and HMG CoA reductase (P = 0.003) mRNA molecules in liver and mononuclear leukocytes. Furthermore, the numbers of copies of HMG CoA reductase and LDL receptor mRNA were correlated with each other in both liver (P = 0.02) and mononuclear leukocytes (P = 0.01), consistent with coordinate regulation. These data demonstrate that the mechanisms which regulate mRNA levels in liver and mononuclear cells are similar and suggest that freshly isolated mononuclear cells can be used to predict HMG CoA reductase and LDL receptor mRNA levels in liver.
E E Powell, P A Kroon
The mechanisms leading to the recovery of the kidney after ischemic acute renal failure are poorly understood. To explore the role played by mitogenesis and dedifferentiation in this repair process and to identify whether the genetic response of the nephron segments reflects the level of susceptibility to injury, the temporal and nephron segment expressions of various proteins implicated in mitogenesis, differentiation, and injury were determined. Proliferating cell nuclear antigen (PCNA), a marker for the G1-S transition in the cell cycle and hence mitogenesis, was detected primarily in the S3 segment of the proximal tubule, with maximal expression at 2 d postischemia. Vimentin, normally present in mesenchymal cells but not epithelial cells, and hence a marker for the state of differentiation, was prominently expressed in the S3 segment 2-5 d postischemia. In the S3 segments in the outer stripe of the medulla cells that stained positively for PCNA also stained positively for vimentin. Clusterin, a marker for cell injury, was expressed primarily in the S3 segment and in the distal tubule with distinct staining patterns in each segment. None of the cells that stained with clusterin antibodies were positively stained with PCNA or vimentin antibodies. Likewise, none of the PCNA or vimentin-positive cells expressed clusterin at detectable levels. Thus, in the S3 segment, where there is significant ischemic injury, surviving cells express markers indicating that they undergo mitogenesis and dedifferentiate in the postischemic period. While there is some expression of c-Fos in the S3 segment, c-Fos was expressed predominantly, at 1 and 3 h postischemia, in the nuclei of the distal nephron, particularly in the thick ascending limb. The data support the view that the mature renal S3 segment epithelial cell can be a progenitor cell.
R Witzgall, D Brown, C Schwarz, J V Bonventre
De novo expression of TNF, IFN gamma, IL-3, IL-4, and IL-6 genes was initiated rapidly by treatment of mice with anti-CD3. A specific feature of this reaction was that TNF was derived exclusively from T cells. TNF was produced both as a mature soluble trimeric protein and as a 26-kD anti-TNF-reactive protein compatible with membrane-anchored TNF. Pretreatment with anti-TNF did not affect anti-CD3-triggered TNF mRNA expression in T cells. In contrast, in vivo and in vitro anti-TNF treatment upregulated anti-CD3-induced IFN gamma mRNA expression and inhibited IL-4 mRNA expression. These latter effects were not dependent on TNF neutralization: pretreatment with soluble recombinant 55-kD TNF receptor (TBPI) as an alternative TNF-neutralizing agent did not modify the anti-CD3-induced cytokine profile. These results suggest that a direct interaction between anti-TNF and T cell membrane-anchored TNF could account for the observed modulation of cytokine gene expression. The increased expression of INF gamma mRNA observed in anti-TNF-treated animals correlated with a decrease in IL-3 and IL-6 mRNA expression. Conversely, IFN gamma blockade by a neutralizing anti-IFN gamma mAb led to a substantial increase in both IL-3 and IL-6 gene expression induced by anti-CD3. Taken together, these results strongly argue for the existence, in the anti-CD3-induced cytokine cascade, of IFN gamma-dependent regulation of IL-3 production, which in turn modulates IL-6 production.
C Ferran, F Dautry, S Mérite, K Sheehan, R Schreiber, G Grau, J F Bach, L Chatenoud
We have reported that ischemic preconditioning may limit infarct size by increasing 5'-nucleotidase activity. The present study tested whether alpha 1-adrenoceptor stimulation in ischemic preconditioning mediates the infarct size-limiting effect through augmentation of 5'-nucleotidase activity. The coronary artery was occluded four times for 5 min separated by 5 min of reperfusion (ischemic preconditioning) in 82 dogs. Then the coronary artery was occluded for 90 min followed by 6 h of reperfusion. Infarct size normalized by risk area was smaller after ischemic preconditioning than in the control group (40.6 +/- 2.3 vs 6.7 +/- 2.0%, P < 0.001), even though no difference existed in endomyocardial collateral flow during ischemia (8.7 +/- 1.0 vs 8.9 +/- 1.0 ml/100 g per min). Ectosolic and cytosolic 5'-nucleotidase activity was increased after ischemic preconditioning. However, prazosin blunted the infarct size-limiting effect of ischemic preconditioning (infarct size: 42.8 +/- 3.7%). Intermittent alpha 1-adrenoceptor stimulation by methoxamine mimicked the increase in 5'-nucleotidase activity and the infarct size-limiting effect, which were abolished by alpha, beta,-methyleneadenosine 5'-diphosphate. Identical results were obtained in the conscious model (n = 20). Therefore, we conclude that increases in ectosolic 5'-nucleotidase activity due to alpha 1-adrenoceptor activation may contribute to the infarct size-limiting effect of ischemic preconditioning.
M Kitakaze, M Hori, T Morioka, T Minamino, S Takashima, H Sato, Y Shinozaki, M Chujo, H Mori, M Inoue
The present studies investigated the in vivo expression of the p53 suppressor gene and protein product in response to acute cutaneous injury in swine, along with the parallel expression of the c-sis/PDGF-B mitogen and its receptor beta (PDGF-R beta). p53 expression was shown to be suppressed during the period of active cellular proliferation in the injured tissue and to reemerge during the stages of healing. In contrast, c-sis/PDGF-B and PDGF-R beta were expressed during the early phase of active cellular proliferation and they were suppressed upon healing. This inverse relationship between mitogenic growth factors and p53 suggests the presence of well-controlled physiologic mechanisms that regulate in vivo the processes of normal tissue repair in response to injury. At the stages of tissue regeneration, these mechanisms include both the expression of growth factors that promote cell proliferation and the suppression of p53 that downregulates proliferation. At the stages of healing, the expression of the mitogenic growth factors is suppressed and that of p53 reemerges, reaching its peak at the time of complete epithelialization and healing of the injured tissue. These studies are the first to link the response of p53 protein to physiologic processes of tissue regeneration in vivo.
H N Antoniades, T Galanopoulos, J Neville-Golden, C P Kiritsy, S E Lynch
To investigate the role of apoE in hepatic uptake of chylomicron remnants, we studied chylomicron metabolism in transgenic mice overexpressing apoE in the liver. Plasma clearance of injected 125I-labeled human chylomicrons was fivefold faster in transgenic mice than in controls. Immunohistochemistry demonstrated that apoE was specifically localized at the basolateral surface of hepatocytes from fasted transgenic mice. After injection of a large amount of chylomicrons, the density of the cell surface apoE was markedly reduced and vesicular staining was observed in the cytoplasm, suggesting that the cell surface apoE was used for hepatic endocytosis of chylomicrons and remnants. Polyacrylamide gel analysis of chylomicrons and remnants that had been reisolated from plasma and from liver membrane after the injection of chylomicrons showed the particles to be enriched with apoE mainly after their influx into the liver rather than during their residence in plasma. These results provide strong evidence for the secretion-recapture process of apoE, whereby chylomicron remnants enter the sinusoidal space, acquire apoE molecules, and subsequently are endocytosed. Data from experiments with very low density lipoprotein and LDL showed that this system is specific for chylomicron remnants.
H Shimano, Y Namba, J Ohsuga, M Kawamura, K Yamamoto, M Shimada, T Gotoda, K Harada, Y Yazaki, N Yamada
We have shown that the heart expresses two distinct forms of adenylylcyclase mRNA, types V and VI. In this study we have characterized the expression of these two mRNA species in heart failure generated by overdrive pacing at a rate of 240 beats/min. After 4 wk, left ventricular end-diastolic pressure and heart rate increased significantly with the appearance of signs of heart failure, i.e., edema, ascites, and exercise intolerance. Basal as well as forskolin-stimulated adenylylcyclase activities decreased significantly, which was accompanied by a reduction in the steady state mRNA levels of adenylylcyclase types V and VI. These data suggest that in this model of cardiomyopathy, the downregulation of adenylylcyclase catalytic activity results, at least in part, from a reduction in the steady state levels of types V and VI adenylylcyclase mRNA levels.
Y Ishikawa, S Sorota, K Kiuchi, R P Shannon, K Komamura, S Katsushika, D E Vatner, S F Vatner, C J Homcy
Prostacyclin (PGI2) is a key mediator of pulmonary vasomotor tone during late gestation and in the newborn, and its production in whole lung increases during that period. We investigated the developmental regulation of PGI2 synthesis in ovine intrapulmonary artery (PA) segments from 110 to 115 d (F1) and 125 to 135 d gestation fetal lambs (F2, term = 144 d) and 1- and 4-wk-old newborn lambs (NB1 and NB2). Basal PGI2 rose fourfold from F1 to F2, fourfold from F2 to NB1, and twofold from NB1 to NB2. In all age groups 66-72% of PGI2 was derived from the endothelium. Similar fold increases in PGI2 were observed with maturation in intact and endothelium-denuded segments. In intact PA from F2, NB1, and NB2, basal PGI2 synthesis and synthesis maximally stimulated by bradykinin, A23187, or arachidonic acid rose with development in a comparable manner. In contrast, PGI2 synthesis stimulated by exogenous PGH2, the product of cyclooxygenase, was similar at all ages. Immunoblot analyses of PA from F2, NB1, and NB2 revealed that there is a sixfold maturational increase in cyclooxygenase-1 protein; the cyclooxygenase-2 isoform was not detectable. Cyclooxygenase-1 mRNA abundance in whole lung also rose with development. Thus, PGI2 synthesis in ovine PA endothelium and vascular smooth muscle increases markedly during late fetal and early newborn life; the increase is due to a rise in cyclooxygenase activity related to enhanced expression of cyclooxygenase-1. We conclude that there is developmental regulation of PA cyclooxygenase-1 gene expression, and that this may be critical to successful cardiopulmonary transition and function in the newborn.
T S Brannon, A J North, L B Wells, P W Shaul
P Rosenkranz-Weiss, W C Sessa, S Milstien, S Kaufman, C A Watson, J S Pober
Numerous studies have explored the pathogenesis of cyclosporin A (CysA)-induced hypertension; however, none has assessed the impact of CysA treatment on resistance arteries in the setting of elevated blood pressure. Therefore, we studied the chronic effect of CysA on rat mesenteric artery resistance vessels (ex vivo). CysA (25 mg/kg per d for 7 d), but not vehicle, significantly raised systolic blood pressure (13.4 +/- 2.2 mmHg, P < 0.003, n = 9 per group). The resistance vessels from CysA-treated rats showed a small but significant decrease in norepinephrine sensitivity (P < 0.03) and a pronounced decrease in endothelium-dependent and -independent relaxation (P < 0.001) compared to controls. Endothelin-1 sensitivity tended to be diminished (P = 0.07). The direct (in vitro) effect of CysA was subsequently evaluated in resistance vessels from nontreated animals (n = 8) and exposed to CysA (2 micrograms/ml) for 24 h. As observed in vivo, CysA significantly decreased endothelium-dependent and -independent relaxations (P < 0.05) and attenuated norepinephrine sensitivity (P = 0.06). Methylene blue, a nitric oxide quencher, significantly inhibited the acetylcholine-induced relaxation in control, but not in CysA vessels, suggesting a selective action of CysA on the nitric oxide pathway. We conclude that CysA-induced hypertension is the consequence of a primary effect on resistance vessel relaxation, not increased vasoconstriction, as previously suggested.
J B Roullet, H Xue, D A McCarron, S Holcomb, W M Bennett
We have investigated the effects of cystamine on the replication of human immunodeficiency virus (HIV) in human lymphocytes and macrophages, the natural targets of HIV in vivo. Treatment of chronically infected macrophages with cystamine, at a concentration (500 microM) that did not show any cytotoxic or cytostatic effects, strongly decreased (> 80%) HIV-p24 antigen production and completely abolished the production of infectious viral particles. Cystamine does not affect viral transcription, translation or protein processing; indeed, all HIV proteins are present in a pattern similar to that of nontreated cells. Instead, cystamine interferes with the orderly assembly of HIV virions, as shown by electron microscopy analysis, that reveals only defective viral particles in treated cells. Moreover, suppression of HIV replication, due to the inhibition of proviral DNA formation was observed in acutely infected lymphocytes and macrophages pretreated with cystamine. These results show that cystamine potently suppresses HIV replication in human cells by contemporaneously blocking at least two independent steps of the viral life cycle, without affecting cell viability, suggesting that this compound may represent a new possibility towards the treatment of HIV-1 infection.
A Bergamini, M Capozzi, L Ghibelli, L Dini, A Salanitro, G Milanese, T Wagner, S Beninati, C D Pesce, C Amici
Proopiomelanocortin (POMC), the precursor for melanotropic, corticotropic, and opioid peptides such as alpha-melanocyte-stimulating hormone (alpha MSH), ACTH, and other related peptides, was originally identified as a product of the pituitary gland. However, recent evidence shows that POMC products can also be produced by nonpituitary tissues. Because keratinocytes, the major constituent of the epidermis exhibit the capacity to release a variety of proinflammatory and immunomodulatory mediators, the present study was performed to investigate whether human keratinocytes are able to produce POMC-derived peptides. Supernatants of human normal keratinocytes and an epidermal carcinoma cell line (A431) contained significant levels of immunoreactive alpha MSH and ACTH. Upon immuneprecipitation and size-exclusion chromatography, keratinocyte-derived alpha MSH exhibited a molecular mass of approximately 1 kD and was biologically active as demonstrated in a tyrosinase bioassay. Northern blot analysis revealed the expression of POMC-specific transcripts (1.3 kb) in both normal keratinocytes and A431 cells. The production of alpha MSH and ACTH could be significantly upregulated both at the protein and mRNA level upon treatment with phorbol myristate acetate, ultraviolet light, or interleukin 1. These data provide first evidence that human keratinocytes produce POMC-derived peptides such as alpha MSH and ACTH. Because POMC-derived peptides recently have been recognized as potent immunomodulatory mediators, their presence in the epidermis may have a major impact on the skin immune system.
E Schauer, F Trautinger, A Köck, A Schwarz, R Bhardwaj, M Simon, J C Ansel, T Schwarz, T A Luger
Glucagon-like peptide 1 [7-36 amide] (GLP-1) has been shown to enhance insulin secretion in healthy and type II diabetic humans, and to increase glucose disposal in type I diabetic patients. To further define its action on glucose kinetics, we studied six healthy subjects who received either GLP-1 (45 pmol/kg per h) or 150 mM saline on two mornings during which a modified intravenous glucose tolerance test was performed. Plasma insulin and glucose levels were analyzed using Bergman's minimal model of glucose kinetics to derive indices of insulin sensitivity (SI) and glucose effectiveness at basal insulin (SG), the latter a measure of glucose disposition independent of changes in insulin. In addition, basal insulin concentrations, the acute insulin response to glucose (AIRg), plasma glucagon levels, and the glucose disappearance constant (Kg) were measured on the days that subjects received GLP-1 or saline. Compared with saline infusions, GLP-1 increased the mean Kg from 1.61 +/- 0.20 to 2.65 +/- 0.25%/min (P = 0.022). The enhanced glucose disappearance seen with GLP-1 was in part the result of its insulinotropic effect, as indicated by a rise in AIRg from 240 +/- 48 to 400 +/- 78 pM (P = 0.013). However, there was also an increase in SG from 1.77 +/- 0.11 to 2.65 +/- 0.33 x 10(-2).min-1 (P = 0.038), which was accounted for primarily by insulin-independent processes, viz glucose effectiveness in the absence of insulin. There was no significant effect of GLP-1 on SI or basal insulin, and glucagon levels were not different during the glucose tolerance tests with or without GLP-1. Thus, GLP-1 improves glucose tolerance both through its insulinotropic action and by increasing glucose effectiveness. These findings suggest that GLP-1 has direct effects on tissues involved in glucose disposition. Furthermore, this peptide may be useful for studying the process of insulin-independent glucose disposal, and pharmacologic analogues may be beneficial for treating patients with diabetes mellitus.
D A D'Alessio, S E Kahn, C R Leusner, J W Ensinck
Physical training increases skeletal muscle insulin sensitivity. Since training also causes functional and structural changes in the myocardium, we compared glucose uptake rates in the heart and skeletal muscles of trained and untrained individuals. Seven male endurance athletes (VO2max 72 +/- 2 ml/kg/min) and seven sedentary subjects matched for characteristics other than VO2max (43 +/- 2 ml/kg/min) were studied. Whole body glucose uptake was determined with a 2-h euglycemic hyperinsulinemic clamp, and regional glucose uptake in femoral and arm muscles, and myocardium using 18F-fluoro-2-deoxy-D-glucose and positron emission tomography. Glucose uptake in the athletes was increased by 68% in whole body (P < 0.0001), by 99% in the femoral muscles (P < 0.01), and by 62% in arm muscles (P = 0.06), but it was decreased by 33% in the heart muscle (P < 0.05) as compared with the sedentary subjects. The total glucose uptake rate in the heart was similar in the athletes and control subjects. Left ventricular mass in the athletes was 79% greater (P < 0.001) and the meridional wall stress smaller (P < 0.001) as estimated by echocardiography. VO2max correlated directly with left ventricular mass (r = 0.87, P < 0.001) and inversely with left ventricular wall stress (r = -0.86, P < 0.001). Myocardial glucose uptake correlated directly with the rate-pressure product (r = 0.75, P < 0.02) and inversely with left ventricular mass (r = -0.60, P < 0.05) or with the whole body glucose disposal (r = -0.68, P < 0.01). Thus, in athletes, (a) insulin-stimulated glucose uptake is enhanced in the whole body and skeletal muscles, (b) whereas myocardial glucose uptake per muscle mass is reduced possibly due to decreased wall stress and energy requirements or the use of alternative fuels, or both.
P Nuutila, M J Knuuti, O J Heinonen, U Ruotsalainen, M Teräs, J Bergman, O Solin, H Yki-Järvinen, L M Voipio-Pulkki, U Wegelius
There is evidence that intraislet cellular communication and hormone delivery within the islets of Langerhans is controlled via capillary perfusion directed from the B cell core to the A/D cell mantle (intraislet portal system). To determine whether vascularization of freely transplanted islets repeats this "core-to-mantle" capillary perfusion, hamster islets were isolated by collagenase digestion and transplanted into a skinfold chamber of syngeneic animals (n = 12). 14 d after transplantation, the microvasculature of the islet grafts was analyzed by in vivo fluorescence microscopy. The capillary glomerulum-like network of the islet grafts (n = 109) was found supplied by individual arterioles, which regularly pierced the islet and broke into capillaries within the graft (96/109 [88.1%]), resulting in capillary flow directed from the core to the islet's periphery. Only in 13 of 109 islets (11.9%) arterioles broke into capillaries at the outside margin of the islet and capillary flow was directed simultaneously to vessels located within the core, as well as the periphery of the graft. The islet's capillary network was drained by individual venules and intercapillary anastomoses between the newly formed islet capillaries and the preexisting capillaries of the host muscle tissue. Immunohistochemical staining revealed B cells located within the core, and A and D cells scattered in the periphery of the islets, indicating reestablishment of sequential B-->A/D cellular perfusion of the grafts. Thus, freely transplanted islets develop an intra-islet portal system, similarly to that of pancreatic islets in situ.
M D Menger, P Vajkoczy, C Beger, K Messmer
IGF Binding Protein-3 (IGFBP-3), the major IGF carrier in the blood, undergoes limited proteolysis which reduces its affinity for IGFs, thus facilitating dissociation. The functional effects of this at the cellular level were studied by comparing two serum pools, one from healthy adults, one from women during late pregnancy when IGFBP-3 proteolysis is increased. Sera were mixed to yield identical IGF-I and IGF-II concentrations in the two pools. Western ligand and immunoblotting gave the characteristic IGFBP patterns for the two types of serum. Both pools dose-dependently stimulated DNA synthesis in cultured chick embryo fibroblasts. Stimulation by pregnancy serum was twice that by normal serum at 0.05-0.2% concentrations (P < 0.001). In the presence of excess monoclonal anti-IGF-I and -II antibodies, stimulation by both (0.1-0.2%) pools was 70-80% reduced and residual stimulation was similar. Addition of recombinant human (rh) IGFBP-3 dose-dependently depressed both pools' activity, more so for normal serum at 25 and 50 ng/ml, equally for each at 100 ng/ml. At the latter concentration, slight proteolysis of the rhIGFBP-3 was detectable in the presence of 0.2% pregnancy serum, but at 25 ng/ml, proteolysis was absent. These results suggest that IGFs are released more readily from pregnancy serum, accounting for the weaker inhibitory effect of low rhIGFBP-3 concentrations. For identical IGF concentrations, pregnancy serum's greater biological activity therefore reflects greater IGF availability to the cells. This study demonstrates the functional consequences at cellular level of serum IGFBP-3 proteolysis, underlining its significance in regulating serum IGF bioavailability.
C Blat, J Villaudy, M Binoux
Nitric oxide (NO) is a novel biologic messenger with diverse effects but its role in organ transplantation remains poorly understood. Using a porphyrinic microsensor, the first direct measurements of coronary vascular and endocardial NO production were made. NO was measured directly in the effluent of preserved, heterotopically transplanted rat hearts stimulated with L-arginine and bradykinin; NO concentrations fell from 2.1 +/- 0.4 microM for freshly explanted hearts to 0.7 +/- 0.2 and 0.2 +/- 0.08 microM for hearts preserved for 19 and 38 h, respectively. NO levels were increased by SOD, suggesting a role for superoxide-mediated destruction of NO. Consistent with these data, addition of the NO donor nitroglycerin (NTG) to a balanced salt preservation solution enhanced graft survival in a time- and dose-dependent manner, with 92% of hearts supplemented with NTG surviving 12 h of preservation versus only 17% in its absence. NTG similarly enhanced preservation of hearts stored in University of Wisconsin solution, the clinical standard for preservation. Other stimulators of the NO pathway, including nitroprusside, L-arginine, or 8-bromoguanosine 3',5' monophosphate, also enhanced graft survival, whereas the competitive NO synthase antagonist NG-monomethyl-L-arginine was associated with poor preservation. Likely mechanisms whereby supplementation of the NO pathway enhanced preservation included increased blood flow to the reperfused graft and decreased graft leukostasis. NO was also measured in endothelial cells subjected to hypoxia/reoxygenation and detected based on its ability to inhibit thrombin-mediated platelet aggregation and serotonin release. NO became undetectable in endothelial cells exposed to hypoxia followed by reoxygenation and was restored to normoxic levels on addition of SOD. These studies suggest that the NO pathway fails during preservation/transplantation because of formation of oxygen free radicals during reperfusion, which quench available NO. Augmentation of NO/cGMP-dependent mechanisms enhances vascular function after ischemia and reperfusion and provides a new strategy for transplantation of vascular organs.
D J Pinsky, M C Oz, S Koga, Z Taha, M J Broekman, A J Marcus, H Liao, Y Naka, J Brett, P J Cannon
P A Bécherel, M D Mossalayi, F Ouaaz, L Le Goff, B Dugas, N Paul-Eugène, C Frances, O Chosidow, E Kilchherr, J J Guillosson