Hu et al. report that KRAS mutation drives expression of CD47 in lung adenocarcinoma, leading to tumor escape from innate immune surveillance. Image credit: Huanhuan Hu and Rongjie Cheng.
This Viewpoint was written in association with the 25th anniversary of the American Society for Clinical Investigation’s (ASCI’s) Stanley J. Korsmeyer Award, which honors the highest standards of scientific excellence, meritorious research, intellectual integrity, and the mentoring of future life-science researchers. In 2018, the award recognized Joseph Heitman (Figure 1), for his key contributions to our understanding of how eukaryotic microbial pathogens evolve, cause disease, and develop drug resistance and his discovery of TOR and FKBP12 as targets of the immunosuppressive chemotherapeutic drug rapamycin. Dr. Heitman has mentored numerous undergraduates, medical students, graduate students, and postdoctoral and medical fellows, many of whom have developed independent careers in medicine and basic biomedical research.
Joseph Heitman
Boghuma K. Titanji, Vincent C. Marconi
This Review provides an update on ryanodine receptors (RyRs) and their role in human diseases of heart, muscle, and brain. Calcium (Ca2+) is a requisite second messenger in all living organisms. From C. elegans to mammals, Ca2+ is necessary for locomotion, bodily functions, and neural activity. However, too much of a good thing can be bad. Intracellular Ca2+ overload can result in loss of function and death. Intracellular Ca2+ release channels evolved to safely provide large, rapid Ca2+ signals without exposure to toxic extracellular Ca2+. RyRs are intracellular Ca2+ release channels present throughout the zoosphere. Over the past 35 years, our knowledge of RyRs has advanced to the level of atomic-resolution structures revealing their role in the mechanisms underlying the pathogenesis of human disorders of heart, muscle, and brain. Stress-induced RyR-mediated intracellular Ca2+ leak in the heart can promote heart failure and cardiac arrhythmias. In skeletal muscle, RyR1 leak contributes to muscle weakness in inherited myopathies, to age-related loss of muscle function and cancer-associated muscle weakness, and to impaired muscle function in muscular dystrophies, including Duchenne. In the brain, leaky RyR channels contribute to cognitive dysfunction in Alzheimer’s disease, posttraumatic stress disorder, and Huntington’s disease. Novel therapeutics targeting dysfunctional RyRs are showing promise.
Andrew R. Marks
Immune checkpoint blockade (ICB) has revolutionized modern cancer therapy, arousing great interest in the neuro-oncology community. While several reports show that subsets of patients with glioma exhibit durable responses to immunotherapy, the efficacy of this treatment has not been observed for unselected patient populations, preventing its broad clinical implementation for gliomas and glioblastoma (GBM). To exploit the maximum therapeutic potential of ICB for patients with glioma, understanding the different aspects of glioma-related tumor immune responses is of critical importance. In this Review, we discuss contributing factors that distinguish subsets of patients with glioma who may benefit from ICB. Specifically, we discuss (a) the complex interaction between the tumor immune microenvironment and glioma cells as a potential influence on immunotherapy responses; (b) promising biomarkers for responses to immune checkpoint inhibitors; and (c) the potential contributions of peripheral immune cells to therapeutic responses.
Víctor A. Arrieta, Crismita Dmello, Daniel J. McGrail, Daniel J. Brat, Catalina Lee-Chang, Amy B. Heimberger, Dhan Chand, Roger Stupp, Adam M. Sonabend
Epigenetic remodeling is a molecular hallmark of gliomas, and it has been identified as a key mediator of glioma progression. Epigenetic dysregulation contributes to gliomagenesis, tumor progression, and responses to immunotherapies, as well as determining clinical features. This epigenetic remodeling includes changes in histone modifications, chromatin structure, and DNA methylation, all of which are driven by mutations in genes such as histone 3 genes (H3C1 and H3F3A), isocitrate dehydrogenase 1/2 (IDH1/2), α-thalassemia/mental retardation, X-linked (ATRX), and additional chromatin remodelers. Although much of the initial research primarily identified how the epigenetic aberrations impacted glioma progression by solely examining the glioma cells, recent studies have aimed at establishing the role of epigenetic alterations in shaping the tumor microenvironment (TME). In this review, we discuss the mechanisms by which these epigenetic phenomena in glioma remodel the TME and how current therapies targeting epigenetic dysregulation affect the glioma immune response and therapeutic outcomes. Understanding the link between epigenetic remodeling and the glioma TME provides insights into the implementation of epigenetic-targeting therapies to improve the antitumor immune response.
Brandon L. McClellan, Santiago Haase, Felipe J. Nunez, Mahmoud S. Alghamri, Ali A. Dabaja, Pedro R. Lowenstein, Maria G. Castro
Alphaviruses are enveloped, insect-transmitted, positive-sense RNA viruses that infect humans and other animals and cause a range of clinical manifestations, including arthritis, musculoskeletal disease, meningitis, encephalitis, and death. Over the past four years, aided by CRISPR/Cas9–based genetic screening approaches, intensive research efforts have focused on identifying entry receptors for alphaviruses to better understand the basis for cellular and species tropism. Herein, we review approaches to alphavirus receptor identification and how these were used for discovery. The identification of new receptors advances our understanding of viral pathogenesis, tropism, and evolution and is expected to contribute to the development of novel strategies for prevention and treatment of alphavirus infection.
Ofer Zimmerman, Autumn C. Holmes, Natasha M. Kafai, Lucas J. Adams, Michael S. Diamond
Tryptophan (Trp) metabolism plays a central role in sleep, mood, and immune system regulation. The kynurenine pathway (KP), which is regulated by the enzymes tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3 dioxygenase (IDO), which catalyze the conversion of Trp to kynurenine (Kyn), facilitates immune regulation and influences neurocognition. Notably, Kyn metabolites bind the N-methyl-d-aspartate receptor (NMDAR), essential for memory encoding, and in turn, cognition. Aberrant NMDAR activity through agonist binding influences excitability and cell death. In this issue of the JCI, Watne and authors demonstrate that KP pathway end products were elevated in the serum and the cerebrospinal fluid (CSF) of subjects with delirium. This observation provides insight regarding the basis of a variety of commonly observed clinical conditions including sundowning, abnormal sleep-wake cycles in hospitalized patients, neurodegenerative cognitive impairment, radiation-induced cognitive impairment, neurocognitive symptomatology related to COVID-19, and clinical outcomes observed in patients with CNS tumors, such as gliomas.
Amy B. Heimberger, Rimas V. Lukas
The genetic basis of preimplantation embryo arrest is slowly being unraveled. Recent discoveries point to maternally expressed proteins required for cellular functions before the embryonic genome is activated. In this issue of the JCI, Wang, Miyamoto, et al. suggest a critical role for karyopherin-mediated protein cargo transport between oocyte cytoplasm and nucleus. Defective maternal oocyte–expressed human karyopherin subunit α7 (KPNA7) and mouse KPNA2 fail to bind a critical substrate, ribosomal L1 domain-containing protein 1 (RSL1D1), affecting its transport to the nucleus. As shown in embryos of Kpna2-null females, the consequences are disrupted zygotic genome activation and arrest of development. These findings have important implications for diagnosis and treatment of female infertility.
Momal Sharif, Laura Detti, Ignatia B. Van den Veyver
The COVID-19 pandemic, caused by the SARS-CoV-2 coronavirus, has resulted in much human suffering and societal disruption. The ChAdOx1 nCoV-19 vaccine against COVID-19 has had a crucial role in the fight against the pandemic. While ChAdOx1 nCoV-19 has been shown to induce adaptive B and T cell responses, which protect against COVID-19, in this issue of the JCI, Murphy et al. show that this vaccine also induces trained innate immunity. This finding contributes to a better understanding of the complex immunological effects of adenoviral-based vaccines, provides the possibility of clinically relevant heterologous effects of these vaccines, and suggests that other adenoviral-based vaccines may induce trained immunity.
Mihai G. Netea, Leo A.B. Joosten
Androgen biosynthesis enzyme 3β-hydroxysteroid dehydrogenase type 1 (3βHSD1) encoded by HSD3B1 has emerged as a potential driver for therapeutic resistance in prostate cancer. Patients with homozygous HSD3B1(1245C) inheritance are intrinsically more resistant to currently available androgen/androgen receptor–targeting (AR-targeting) drugs. In this issue of the JCI, Li et al. present data on the regulation of 3βHSD1 phosphorylation and activity by tyrosine kinase BMX. Inhibition of BMX activity by genetic or pharmacologic approaches blocked androgen biosynthesis in prostate cancer cells and inhibited tumor growth in preclinical xenograft models. The findings provide insights into mechanisms underlying castration resistance in prostate cancer and reveal a potential strategy to circumvent therapeutic resistance in patients with homozygous HSD3B1(1245C) inheritance.
Yun Qiu
KRAS is one of the most frequently activated oncogenes in human cancers. Although the role of KRAS mutation in tumorigenesis and tumor maintenance has been extensively studied, the relationship between KRAS and the tumor immune microenvironment is not fully understood. Here, we identified a role of KRAS in driving tumor evasion from innate immune surveillance. In samples of lung adenocarcinoma from patients and Kras-driven genetic mouse models of lung cancer, mutant KRAS activated the expression of cluster of differentiation 47 (CD47), an antiphagocytic signal in cancer cells, leading to decreased phagocytosis of cancer cells by macrophages. Mechanistically, mutant KRAS activated PI3K/STAT3 signaling, which restrained miR-34a expression and relieved the posttranscriptional repression of miR-34a on CD47. In 3 independent cohorts of patients with lung cancer, the KRAS mutation status positively correlated with CD47 expression. Therapeutically, disruption of the KRAS/CD47 signaling axis with KRAS siRNA, the KRASG12C inhibitor AMG 510, or a miR-34a mimic suppressed CD47 expression, enhanced the phagocytic capacity of macrophages, and restored innate immune surveillance. Our results reveal a direct mechanistic link between active KRAS and innate immune evasion and identify CD47 as a major effector underlying the KRAS-mediated immunosuppressive tumor microenvironment.
Huanhuan Hu, Rongjie Cheng, Yanbo Wang, Xiaojun Wang, Jianzhuang Wu, Yan Kong, Shoubin Zhan, Zhen Zhou, Hongyu Zhu, Ranran Yu, Gaoli Liang, Qingyan Wang, Xiaoju Zhu, Chen-Yu Zhang, Rong Yin, Chao Yan, Xi Chen
BACKGROUND Studies assessing the efficacy of therapies for neovascular age-related macular degeneration (nvAMD) have demonstrated that aflibercept may have a longer treatment interval than its less-expensive alternative, bevacizumab. However, whether this benefit justifies the additional cost of aflibercept remains under debate. We have recently reported that a treat-and-extend-pause/monitor approach can be used to successfully wean 31% of patients with nvAMD off anti-VEGF therapy. Here, we examined whether the choice of therapy influences the outcomes of this approach.METHODS In this retrospective analysis, 122 eyes of 106 patients with nvAMD underwent 3 consecutive monthly injections with either aflibercept (n = 70) or bevacizumab (n = 52), followed by a treat-and-extend protocol, in which the decision to extend the interval between treatments was based on visual acuity, clinical exam, and the presence or absence of fluid on optical coherence tomography. Eyes that remained stable 12 weeks from their prior treatment were given a 6-week trial of holding further treatment, followed by quarterly monitoring. Treatment was resumed for worsening vision, clinical exam, or optical coherence tomography findings.RESULTS At the end of 1 year, eyes receiving bevacizumab had similar vision but required more injections (8.7 ± 0.3 treatments vs. 7.2 ± 0.3 treatments) compared with eyes receiving aflibercept. However, eyes treated with aflibercept were almost 3 times more likely to be weaned off treatment (43% vs. 15%) compared with eyes treated with bevacizumab at the end of 1 year.CONCLUSION These observations expose an advantage of aflibercept over bevacizumab and have important clinical implications for the selection of therapy for patients with nvAMD.FUNDING This work was supported by the National Eye Institute, NIH grants R01EY029750 and R01EY025705, Research to Prevent Blindness, the Alcon Young Investigator Award from the Alcon Research Institute, and the Branna and Irving Sisenwein Professorship in Ophthalmology.
Xuan Cao, Jaron Castillo Sanchez, Tapan P. Patel, Zhiyong Yang, Chuanyu Guo, Danyal Malik, Anuoluwapo Sopeyin, Silvia Montaner, Akrit Sodhi
Repeated or prolonged, but not short-term, general anesthesia during the early postnatal period causes long-lasting impairments in memory formation in various species. The mechanisms underlying long-lasting impairment in cognitive function are poorly understood. Here, we show that repeated general anesthesia in postnatal mice induces preferential apoptosis and subsequent loss of parvalbumin-positive inhibitory interneurons in the hippocampus. Each parvalbumin interneuron controls the activity of multiple pyramidal excitatory neurons, thereby regulating neuronal circuits and memory consolidation. Preventing the loss of parvalbumin neurons by deleting a proapoptotic protein, mitochondrial anchored protein ligase (MAPL), selectively in parvalbumin neurons rescued anesthesia-induced deficits in pyramidal cell inhibition and hippocampus-dependent long-term memory. Conversely, partial depletion of parvalbumin neurons in neonates was sufficient to engender long-lasting memory impairment. Thus, loss of parvalbumin interneurons in postnatal mice following repeated general anesthesia critically contributes to memory deficits in adulthood.
Patricia Soriano Roque, Carolina Thörn Perez, Mehdi Hooshmandi, Calvin Wong, Mohammad Javad Eslamizade, Shilan Heshmati, Nicole Brown, Vijendra Sharma, Kevin C. Lister, Vanessa Magalie Goyon, Laura Neagu-Lund, Cathy Shen, Nicolas Daccache, Hiroaki Sato, Tamaki Sato, Jeffrey S. Mogil, Karim Nader, Christos G. Gkogkas, Mihaela D. Iordanova, Masha Prager-Khoutorsky, Heidi M. McBride, Jean-Claude Lacaille, Linda Wykes, Thomas Schricker, Arkady Khoutorsky
Preimplantation embryo arrest (PREMBA) is a common cause of female infertility and recurrent failure of assisted reproductive technology. However, the genetic basis of PREMBA is largely unrevealed. Here, using whole-exome sequencing data from 606 women experiencing PREMBA compared with 2,813 controls, we performed a population and gene–based burden test and identified a candidate gene, karyopherin subunit α7 (KPNA7). In vitro studies showed that identified sequence variants reduced KPNA7 protein levels, impaired KPNA7 capacity for binding to its substrate ribosomal L1 domain-containing protein 1 (RSL1D1), and affected KPNA7 nuclear transport activity. Comparison between humans and mice suggested that mouse KPNA2, rather than mouse KPNA7, acts as an essential karyopherin in embryonic development. Kpna2–/– female mice showed embryo arrest due to zygotic genome activation defects, recapitulating the phenotype of human PREMBA. In addition, female mice with an oocyte-specific knockout of Rsl1d1 recapitulated the phenotype of Kpna2–/– mice, demonstrating the vital role of substrate RSL1D1. Finally, complementary RNA (cRNA) microinjection of human KPNA7, but not mouse Kpna7, was able to rescue the embryo arrest phenotype in Kpna2–/– mice, suggesting mouse KPNA2 might be a homologue of human KPNA7. Our findings uncovered a mechanistic understanding for the pathogenesis of PREMBA, which acts by impairing nuclear protein transport, and provide a diagnostic marker for PREMBA patients.
Wenjing Wang, Yoichi Miyamoto, Biaobang Chen, Juanzi Shi, Feiyang Diao, Wei Zheng, Qun Li, Lan Yu, Lin Li, Yao Xu, Ling Wu, Xiaoyan Mao, Jing Fu, Bin Li, Zheng Yan, Rong Shi, Xia Xue, Jian Mu, Zhihua Zhang, Tianyu Wu, Lin Zhao, Weijie Wang, Zhou Zhou, Jie Dong, Qiaoli Li, Li Jin, Lin He, Xiaoxi Sun, Ge Lin, Yanping Kuang, Lei Wang, Qing Sang
T cell exhaustion is a state of T cell dysfunction associated with expression of programmed death 1 (PD-1). Exhausted CD8+ T cells are maintained by self-renewing stem-like T cells that provide differentiated TIM3+ cells, a part of which possesses effector-like properties. PD-1–targeted therapies enhance T cell response by promoting differentiation of stem-like T cells toward TIM3+ cells, but the role of mTOR during T cell exhaustion remains elusive. Here, we showed that mTOR inhibition has distinct outcomes during the beginning of and after the establishment of chronic viral infection. Blocking mTOR during the T cell expansion phase enhanced the T cell response by causing accumulation of stem-like T cells, leading to improved efficacy of PD-1 immunotherapy; whereas, after exhaustion progressed, mTOR inhibition caused immunosuppression, characterized by decreased TIM3+ cells and increased viral load with minimal changes in stem-like T cells. Mechanistically, a cell-intrinsic mTOR signal was vital for differentiation of stem-like T cells into the TIM3+ state in the early and late phases of chronic infection as well as during PD-1 immunotherapy. Thus, PD-1 blockade worked after cessation of mTOR inhibition, but simultaneous treatment failed to induce functional TIM3+ cells, reducing efficacy of PD-1 immunotherapy. Our data demonstrate that mTOR regulates T cell exhaustion and have important implications for combination cancer therapies with PD-1 blockade.
Satomi Ando, Charles M. Perkins, Yamato Sajiki, Chase Chastain, Rajesh M. Valanparambil, Andreas Wieland, William H. Hudson, Masao Hashimoto, Suresh S. Ramalingam, Gordon J. Freeman, Rafi Ahmed, Koichi Araki
Tyrosine kinase inhibitors (TKIs) targeting epidermal growth factor receptor (EGFR) are effective for many patients with lung cancer with EGFR mutations. However, not all patients are responsive to EGFR TKIs, including even those harboring EGFR-sensitizing mutations. In this study, we quantified the cells and cellular interaction features of the tumor microenvironment (TME) using routine H&E-stained biopsy sections. These TME features were used to develop a prediction model for survival benefit from EGFR TKI therapy in patients with lung adenocarcinoma and EGFR-sensitizing mutations in the Lung Cancer Mutation Consortium 1 (LCMC1) and validated in an independent LCMC2 cohort. In the validation data set, EGFR TKI treatment prolonged survival in the predicted-to-benefit group but not in the predicted-not-to-benefit group. Among patients treated with EGFR TKIs, the predicted-to-benefit group had prolonged survival outcomes compared with the predicted not-to-benefit group. The EGFR TKI survival benefit positively correlated with tumor-tumor interaction image features and negatively correlated with tumor-stroma interaction. Moreover, the tumor-stroma interaction was associated with higher activation of the hepatocyte growth factor/MET-mediated PI3K/AKT signaling pathway and epithelial-mesenchymal transition process, supporting the hypothesis of fibroblast-involved resistance to EGFR TKI treatment.
Shidan Wang, Ruichen Rong, Donghan M. Yang, Junya Fujimoto, Justin A. Bishop, Shirley Yan, Ling Cai, Carmen Behrens, Lynne D. Berry, Clare Wilhelm, Dara Aisner, Lynette Sholl, Bruce E. Johnson, David J. Kwiatkowski, Ignacio I. Wistuba, Paul A. Bunn Jr., John Minna, Guanghua Xiao, Mark G. Kris, Yang Xie
WEE1 has emerged as an attractive target in epithelial ovarian cancer (EOC), but how EOC cells may alter their sensitivity to WEE1 inhibition remains unclear. Here, through a cell cycle machinery–related gene RNAi screen, we found that targeting outer dense fiber of sperm tails 2–like (ODF2L) was a synthetic lethal partner with WEE1 kinase inhibition in EOC cells. Knockdown of ODF2L robustly sensitized cells to treatment with the WEE1 inhibitor AZD1775 in EOC cell lines in vitro as well as in xenografts in vivo. Mechanistically, the increased sensitivity to WEE1 inhibition upon ODF2L loss was accompanied by accumulated DNA damage. ODF2L licensed the recruitment of PKMYT1, a functionally redundant kinase of WEE1, to the CDK1–cyclin B complex and thus restricted the activity of CDK1 when WEE1 was inhibited. Clinically, upregulation of ODF2L correlated with CDK1 activity, DNA damage levels, and sensitivity to WEE1 inhibition in patient-derived EOC cells. Moreover, ODF2L levels predicted the response to WEE1 inhibition in an EOC patient–derived xenograft model. Combination treatment with tumor-targeted lipid nanoparticles that packaged ODF2L siRNA and AZD1775 led to the synergistic attenuation of tumor growth in the ID8 ovarian cancer syngeneic mouse model. These data suggest that WEE1 inhibition is a promising precision therapeutic strategy for EOC cells expressing low levels of ODF2L.
Jie Li, Jingyi Lu, Manman Xu, Shiyu Yang, Tiantian Yu, Cuimiao Zheng, Xi Huang, Yuwen Pan, Yangyang Chen, Junming Long, Chunyu Zhang, Hua Huang, Qingyuan Dai, Bo Li, Wei Wang, Shuzhong Yao, Chaoyun Pan
Background Heterologous effects of vaccines are mediated by “trained immunity,” whereby myeloid cells are metabolically and epigenetically reprogrammed, resulting in heightened responses to subsequent insults. Adenovirus vaccine vector has been reported to induce trained immunity in mice. Therefore, we sought to determine whether the ChAdOx1 nCoV-19 vaccine (AZD1222), which uses an adenoviral vector, could induce trained immunity in vivo in humans.Methods Ten healthy volunteers donated blood on the day before receiving the ChAdOx1 nCoV-19 vaccine and on days 14, 56, and 83 after vaccination. Monocytes were purified from PBMCs, cell phenotype was determined by flow cytometry, expression of metabolic enzymes was quantified by RT-qPCR, and production of cytokines and chemokines in response to stimulation ex vivo was analyzed by multiplex ELISA.Results Monocyte frequency and count were increased in peripheral blood up to 3 months after vaccination compared with their own prevaccine controls. Expression of HLA-DR, CD40, and CD80 was enhanced on monocytes for up to 3 months following vaccination. Moreover, monocytes had increased expression of glycolysis-associated enzymes 2 months after vaccination. Upon stimulation ex vivo with unrelated antigens, monocytes produced increased IL-1β, IL-6, IL-10, CXCL1, and MIP-1α and decreased TNF, compared with prevaccine controls. Resting monocytes produced more IFN-γ, IL-18, and MCP-1 up to 3 months after vaccination compared with prevaccine controls.Conclusion These data provide evidence for the induction of trained immunity following a single dose of the ChAdOx1 nCoV-19 vaccine.Funding This work was funded by the Health Research Board (EIA-2019-010) and Science Foundation Ireland Strategic Partnership Programme (proposal ID 20/SPP/3685).
Dearbhla M. Murphy, Donal J. Cox, Sarah A. Connolly, Eamon P. Breen, Aenea A.I. Brugman, James J. Phelan, Joseph Keane, Sharee A. Basdeo
BACKGROUND The kynurenine pathway (KP) has been identified as a potential mediator linking acute illness to cognitive dysfunction by generating neuroactive metabolites in response to inflammation. Delirium (acute confusion) is a common complication of acute illness and is associated with increased risk of dementia and mortality. However, the molecular mechanisms underlying delirium, particularly in relation to the KP, remain elusive.METHODS We undertook a multicenter observational study with 586 hospitalized patients (248 with delirium) and investigated associations between delirium and KP metabolites measured in cerebrospinal fluid (CSF) and serum by targeted metabolomics. We also explored associations between KP metabolites and markers of neuronal damage and 1-year mortality.RESULTS In delirium, we found concentrations of the neurotoxic metabolite quinolinic acid in CSF (CSF-QA) (OR 2.26 [1.78, 2.87], P < 0.001) to be increased and also found increases in several other KP metabolites in serum and CSF. In addition, CSF-QA was associated with the neuronal damage marker neurofilament light chain (NfL) (β 0.43, P < 0.001) and was a strong predictor of 1-year mortality (HR 4.35 [2.93, 6.45] for CSF-QA ≥ 100 nmol/L, P < 0.001). The associations between CSF-QA and delirium, neuronal damage, and mortality remained highly significant following adjustment for confounders and multiple comparisons.CONCLUSION Our data identified how systemic inflammation, neurotoxicity, and delirium are strongly linked via the KP and should inform future delirium prevention and treatment clinical trials that target enzymes of the KP.FUNDING Norwegian Health Association and South-Eastern Norway Regional Health Authorities.
Leiv Otto Watne, Christian Thomas Pollmann, Bjørn Erik Neerland, Else Quist-Paulsen, Nathalie Bodd Halaas, Ane-Victoria Idland, Bjørnar Hassel, Kristi Henjum, Anne-Brita Knapskog, Frede Frihagen, Johan Raeder, Aasmund Godø, Per Magne Ueland, Adrian McCann, Wender Figved, Geir Selbæk, Henrik Zetterberg, Evandro F. Fang, Marius Myrstad, Lasse M. Giil
Prostate cancer is highly dependent on androgens and the androgen receptor (AR). Hormonal therapies inhibit gonadal testosterone production, block extragonadal androgen biosynthesis, or directly antagonize AR. Resistance to medical castration occurs as castration-resistant prostate cancer (CRPC) and is driven by reactivation of the androgen-AR axis. 3β-hydroxysteroid dehydrogenase-1 (3βHSD1) serves as the rate-limiting step for potent androgen synthesis from extragonadal precursors, thereby stimulating CRPC. Genetic evidence in men demonstrates the role of 3βHSD1 in driving CRPC. In postmenopausal women, 3βHSD1 is required for synthesis of aromatase substrates and plays an essential role in breast cancer. Therefore, 3βHSD1 lies at a critical junction for the synthesis of androgens and estrogens, and this metabolic flux is regulated through germline-inherited mechanisms. We show that phosphorylation of tyrosine 344 (Y344) occurs and is required for 3βHSD1 cellular activity and generation of Δ4, 3-keto-substrates of 5α-reductase and aromatase, including in patient tissues. BMX directly interacts with 3βHSD1 and is necessary for enzyme phosphorylation and androgen biosynthesis. In vivo blockade of 3βHSD1 Y344 phosphorylation inhibits CRPC. These findings identify what we believe to be new hormonal therapy pharmacologic vulnerabilities for sex-steroid dependent cancers.
Xiuxiu Li, Michael Berk, Christopher Goins, Mohammad Alyamani, Yoon-Mi Chung, Chenyao Wang, Monaben Patel, Nityam Rathi, Ziqi Zhu, Belinda Willard, Shaun Stauffer, Eric Klein, Nima Sharifi
Glioblastoma ranks among the most aggressive and lethal of all human cancers. Self-renewing, highly tumorigenic glioblastoma stem cells (GSCs) contribute to therapeutic resistance and maintain cellular heterogeneity. Here, we interrogated superenhancer landscapes of primary glioblastoma specimens and patient-derived GSCs, revealing a kelch domain–containing gene, specifically Kelch domain containing 8A (KLHDC8A) with a previously unknown function as an epigenetically driven oncogene. Targeting KLHDC8A decreased GSC proliferation and self-renewal, induced apoptosis, and impaired in vivo tumor growth. Transcription factor control circuitry analyses revealed that the master transcriptional regulator SOX2 stimulated KLHDC8A expression. Mechanistically, KLHDC8A bound chaperonin-containing TCP1 (CCT) to promote the assembly of primary cilia to activate hedgehog signaling. KLHDC8A expression correlated with Aurora B/C Kinase inhibitor activity, which induced primary cilia and hedgehog signaling. Combinatorial targeting of Aurora B/C kinase and hedgehog displayed augmented benefit against GSC proliferation. Collectively, superenhancer-based discovery revealed KLHDC8A as what we believe to be a novel molecular target of cancer stem cells that promotes ciliogenesis to activate the hedgehog pathway, offering insights into therapeutic vulnerabilities for glioblastoma treatment.
Derrick Lee, Ryan C. Gimple, Xujia Wu, Briana C. Prager, Zhixin Qiu, Qiulian Wu, Vikas Daggubati, Aruljothi Mariappan, Jay Gopalakrishnan, Matthew R. Sarkisian, David R. Raleigh, Jeremy N. Rich
In IgE-mediated food allergies, exposure to the allergen activates systemic allergic responses. Oral immunotherapy (OIT) treats food allergies through incremental increases in oral allergen exposure. However, OIT only induces sustained clinical tolerance and decreased basophil sensitivity in a subset of individuals despite increases in circulating allergen-specific IgG in all treated individuals. Therefore, we examined the allergen-specific antibodies from 2 OIT cohorts of patients with sustained and transient responses. Here, we compared antibodies from individuals with sustained or transient responses and discovered specific tolerance-associated conformational epitopes of the immunodominant allergen Ara h 2 recognized by neutralizing antibodies. First, we identified what we believe to be previously unknown conformational, intrahelical epitopes using x-ray crystallography with recombinant antibodies. We then identified epitopes only recognized in sustained tolerance. Finally, antibodies recognizing tolerance-associated epitopes effectively neutralized allergen to suppress IgE-mediated effector cell activation. Our results demonstrate the molecular basis of antibody-mediated protection in IgE-mediated food allergy, by defining how these antibodies disrupt IgE-allergen interactions to prevent allergic reactions. Our approach to studying the structural and functional basis for neutralizing antibodies demonstrates the clinical relevance of specific antibody clones in antibody-mediated tolerance. We anticipate that our findings will form the foundation for treatments of peanut allergy using neutralizing antibodies and hypoallergens.
Nicole A. LaHood, Jungki Min, Tarun Keswani, Crystal M. Richardson, Kwasi Amoako, Jingjia Zhou, Orlee Marini-Rapoport, Hervé Bernard, Stéphane Hazebrouck, Wayne G. Shreffler, J. Christopher Love, Anna Pomes, Lars C. Pedersen, Geoffrey A. Mueller, Sarita U. Patil
Background Sanfilippo type B is a mucopolysaccharidosis (MPS) with a major neuronopathic component characterized by heparan sulfate (HS) accumulation due to mutations in the NAGLU gene encoding alfa-N-acetyl-glucosaminidase. Enzyme replacement therapy for neuronopathic MPS requires efficient enzyme delivery throughout the brain in order to normalize HS levels, prevent brain atrophy, and potentially delay cognitive decline.Methods In this phase I/II open-label study, patients with MPS type IIIB (n = 22) were treated with tralesinidase alfa administered i.c.v. The patients were monitored for drug exposure; total HS and HS nonreducing end (HS-NRE) levels in both cerebrospinal fluid (CSF) and plasma; anti-drug antibody response; brain, spleen, and liver volumes as measured by MRI; and cognitive development as measured by age-equivalent (AEq) scores.Results In the Part 1 dose escalation (30, 100, and 300 mg) phase, a 300 mg dose of tralesinidase alfa was necessary to achieve normalization of HS and HS-NRE levels in the CSF and plasma. In Part 2, 300 mg tralesinidase alfa sustained HS and HS-NRE normalization in the CSF and stabilized cortical gray matter volume (CGMV) over 48 weeks of treatment. Resolution of hepatomegaly and a reduction in spleen volume were observed in most patients. Significant correlations were also established between the change in cognitive AEq score and plasma drug exposure, plasma HS-NRE levels, and CGMV.Conclusion Administration of tralesinidase alfa i.c.v. effectively normalized HS and HS-NRE levels as a prerequisite for clinical efficacy. Peripheral drug exposure data suggest a role for the glymphatic system in altering tralesinidase alfa efficacy.Trial registration Clinicaltrials.gov NCT02754076.FUNDING BioMarin Pharmaceutical Inc. and Allievex Corporation.
Nicole Muschol, Anja Koehn, Katharina von Cossel, Ilyas Okur, Fatih Ezgu, Paul Harmatz, Maria J. de Castro Lopez, Maria Luz Couce, Shuan-Pei Lin, Spyros Batzios, Maureen Cleary, Martha Solano, Igor Nestrasil, Brian Kaufman, Adam J. Shaywitz, Stephen M. Maricich, Bernice Kuca, Joseph Kovalchin, Eric Zanelli
Federico Perdomo-Celis, Caroline Passaes, Valérie Monceaux, Stevenn Volant, Faroudy Boufassa, Pierre de Truchis, Morgane Marcou, Katia Bourdic, Laurence Weiss, Corinne Jung, Christine Bourgeois, Cécile Goujard, Laurence Meyer, Michaela Müller-Trutwin, Olivier Lambotte, Asier Sáez-Cirión
Krishnaraj S. Rathod, Vikas Kapil, Shanti Velmurugan, Rayomand S. Khambata, Umme Siddique, Saima Khan, Sven Van Eijl, Lorna C. Gee, Jascharanpreet Bansal, Kavi Pitrola, Christopher Shaw, Fulvio D’Acquisto, Romain A. Colas, Federica Marelli-Berg, Jesmond Dalli, Amrita Ahluwalia
Nan Chiang, Stephania Libreros, Paul C. Norris, Xavier de la Rosa, Charles N. Serhan