Abdelhamed et al. generated a mouse model of Samd9l mutations that recapitulates hematopoietic defects seen in patients with SAMD9L germline mutations, which increase susceptibility to pediatric myeloid neoplasms. The cover image shows nonrandom chromosomal deletions of the mutant Samd9l locus in their mouse model.
Elizabeth M. McNally
The gastric oxyntic glands are maintained by gastric stem cells that continuously supply all differentiated cell types within the corpus epithelium. Stem cells are supported by stromal cells that make up the stem cell niche. In this issue of the JCI, Fischer et al. report on their use of genetically engineered mouse models and organoids to study the role of R-spondin 3 (RSPO3) in the stomach. RSPO3, one of the major stem cell niche factors, primarily promoted secretory differentiation in the normal stomach, but also contributed to regeneration following injury. Mechanistically, RSPO3 was upregulated in the stroma by loss of chief cells and then activated the YAP pathway in gastric stem and progenitor cells, which appeared to be critical for regeneration of the secretory lineage. These data substantially advance our understanding of the regulation of gastric stem cells and highlight a function for RSPO3 in the gastrointestinal tract, which is as the gatekeeper of secretory differentiation.
Ken Kurokawa, Timothy C. Wang, Yoku Hayakawa
Normal-tension glaucoma is a form of optic nerve degeneration that is characterized by loss of retinal ganglion cells independent of eye pressure elevation. In this issue of the JCI, Pan et al. report the discovery in a Japanese family of a mutation in the METTL23 gene, which encodes a histone arginine methyltransferase that causes normal-pressure glaucoma in haploinsufficiency. Inherited as an autosomal dominant condition, METTL23 deficiency revealed an important function in the regulation of pS2 and the downstream NF-κB signaling pathway, which has previously been linked to glaucomatous optic nerve degeneration. These findings are the first direct link between defective epigenetic regulatory machinery and genetic forms of optic nerve degeneration.
Wendy W. Liu, Yang Sun
Sterile α motif domain–containing 9 (SAMD9) and SAMD9-like (SAMD9L) syndromes are inherited bone marrow failure syndromes known for their frequent development of myelodysplastic syndrome with monosomy 7. In this issue of the JCI, Abdelhamed, Thomas, et al. report a mouse model with a hematopoietic cell–specific heterozygous Samd9l mutation knockin. This mouse model resembles human disease in many ways, including bone marrow failure and the nonrandom loss of the mutant allele. Samd9l-mutant hematopoietic stem progenitor cells showed reduced fitness at baseline, which was further exacerbated by inflammation. TGF-β hyperactivation was found to underlie reduced fitness, which was partially rescued by a TGF-β inhibitor. These findings illustrate the potential role of TGF-β inhibitors in the treatment of SAMD9/SAMD9L syndromes.
Moonjung Jung
Despite the clinical advances in managing metastatic prostate cancer in the last 20 years, treatments for patients with metastatic disease only offer a brief respite from disease progression, especially after first-line therapies. Research into treatment resistance has defined a subset of patients with neuroendocrine differentiation of their prostate adenocarcinoma. Although neuroendocrine findings in conjunction with prostate adenocarcinoma can be seen in pathology samples at all stages of disease, the neuroendocrine variant of prostate cancer associated with poor outcomes occurs in approximately 20% of men with advanced disease. In this issue of JCI, Zhao, Sperger, and colleagues present data for a promising biomarker platform that can detect neuroendocrine prostate cancer after serial sampling of patients’ blood with a high degree of sensitivity and specificity. This assay will be tested in several current and future trials to better define its potential clinical role and perhaps provide a greater understanding of neuroendocrine prostate cancer itself.
Fatima Karzai, Ravi A. Madan
Graft-versus-host disease (GVHD), manifesting as either acute (aGVHD) or chronic (cGVHD), presents significant life-threatening complications following allogeneic hematopoietic cell transplantation. Here, we investigated Friend virus leukemia integration 1 (Fli-1) in GVHD pathogenesis and validated Fli-1 as a therapeutic target. Using genetic approaches, we found that Fli-1 dynamically regulated different T cell subsets in allogeneic responses and pathogenicity in the development of aGVHD and cGVHD. Compared with homozygous Fli1-deficient or WT T cells, heterozygous Fli1-deficient T cells induced the mildest GVHD, as evidenced by the lowest Th1 and Th17 cell differentiation. Single-cell RNA-Seq analysis revealed that Fli-1 differentially regulated CD4+ and CD8+ T cell responses. Fli-1 promoted the transcription of Th1/Th17 pathways and T cell receptor–inducible (TCR-inducible) transcription factors in CD4+ T cells, while suppressing activation- and function-related gene pathways in CD8+ T cells. Importantly, a low dose of camptothecin, topotecan, or etoposide acted as a potent Fli-1 inhibitor and significantly attenuated GVHD severity, while preserving the graft-versus-leukemia (GVL) effect. This observation was extended to a xenograft model, in which GVHD was induced by human T cells. In conclusion, we provide evidence that Fli-1 plays a crucial role in alloreactive CD4+ T cell activation and differentiation and that targeting Fli-1 may be an attractive strategy for treating GVHD without compromising the GVL effect.
Steven D. Schutt, Yongxia Wu, Arjun Kharel, David Bastian, Hee-Jin Choi, Mohammed Hanief Sofi, Corey Mealer, Brianyell McDaniel Mims, Hung Nguyen, Chen Liu, Kris Helke, Weiguo Cui, Xian Zhang, Yaacov Ben-David, Xue-Zhong Yu
The basis of immune evasion, a hallmark of cancer, can differ even when cancers arise from one cell type such as in the human skin keratinocyte carcinomas: basal and squamous cell carcinoma. Here we showed that the basal cell carcinoma tumor–initiating cell surface protein CD200, through ectodomain shedding, was responsible for the near absence of NK cells within the basal cell carcinoma tumor microenvironment. In situ, CD200 underwent ectodomain shedding by metalloproteinases MMP3 and MMP11, which released biologically active soluble CD200 into the basal cell carcinoma microenvironment. CD200 bound its cognate receptor on NK cells to suppress MAPK pathway signaling that in turn blocked indirect (IFN-γ release) and direct cell killing. In addition, reduced ERK phosphorylation relinquished negative regulation of PPARγ-regulated gene transcription and led to membrane accumulation of the Fas/FADD death receptor and its ligand, FasL, which resulted in activation-induced apoptosis. Blocking CD200 inhibition of MAPK or PPARγ signaling restored NK cell survival and tumor cell killing, with relevance to many cancer types. Our results thus uncover a paradigm for CD200 as a potentially novel and targetable NK cell–specific immune checkpoint, which is responsible for NK cell–associated poor outcomes in many cancers.
Huw J. Morgan, Elise Rees, Simone Lanfredini, Kate A. Powell, Jasmine Gore, Alex Gibbs, Charlotte Lovatt, Gemma E. Davies, Carlotta Olivero, Boris Y. Shorning, Giusy Tornillo, Alex Tonks, Richard Darley, Eddie C.Y. Wang, Girish K. Patel
The stomach corpus epithelium is organized into anatomical units that consist of glands and pits. Mechanisms that control the cellular organization of corpus glands and enable their recovery upon injury are not well understood. R-spondin 3 (RSPO3) is a WNT-signaling enhancer that regulates stem cell behavior in different organs. Here, we investigated the function of RSPO3 in the corpus during homeostasis, upon chief and/or parietal cell loss, and during chronic Helicobacter pylori infection. Using organoid culture and conditional mouse models, we demonstrate that RSPO3 is a critical driver of secretory cell differentiation in the corpus gland toward parietal and chief cells, while its absence promoted pit cell differentiation. Acute loss of chief and parietal cells induced by high dose tamoxifen — or merely the depletion of LGR5+ chief cells — caused an upregulation of RSPO3 expression, which was required for the initiation of a coordinated regenerative response via the activation of yes-associated protein (YAP) signaling. This response enabled a rapid recovery of the injured secretory gland cells. However, in the context of chronic H. pylori infection, the R-spondin–driven regeneration was maintained long term, promoting severe glandular hyperproliferation and the development of premalignant metaplasia.
Anne-Sophie Fischer, Stefanie Müllerke, Alexander Arnold, Julian Heuberger, Hilmar Berger, Manqiang Lin, Hans-Joachim Mollenkopf, Jonas Wizenty, David Horst, Frank Tacke, Michael Sigal
Increasing evidence has pointed to the important function of T cells in controlling immune homeostasis and pathogenesis after myocardial infarction (MI), although the underlying molecular mechanisms remain elusive. In this study, a broad analysis of immune markers in 283 patients revealed significant CD69 overexpression on Tregs after MI. Our results in mice showed that CD69 expression on Tregs increased survival after left anterior descending (LAD) coronary artery ligation. Cd69–/– mice developed strong IL-17+ γδT cell responses after ischemia that increased myocardial inflammation and, consequently, worsened cardiac function. CD69+ Tregs, by induction of AhR-dependent CD39 ectonucleotidase activity, induced apoptosis and decreased IL-17A production in γδT cells. Adoptive transfer of CD69+ Tregs into Cd69–/– mice after LAD ligation reduced IL-17+ γδT cell recruitment, thus increasing survival. Consistently, clinical data from 2 independent cohorts of patients indicated that increased CD69 expression in peripheral blood cells after acute MI was associated with a lower risk of rehospitalization for heart failure (HF) after 2.5 years of follow-up. This result remained significant after adjustment for age, sex, and traditional cardiac damage biomarkers. Our data highlight CD69 expression on Tregs as a potential prognostic factor and a therapeutic option to prevent HF after MI.
Rafael Blanco-Domínguez, Hortensia de la Fuente, Cristina Rodríguez, Laura Martín-Aguado, Raquel Sánchez-Díaz, Rosa Jiménez-Alejandre, Iker Rodríguez-Arabaolaza, Andrea Curtabbi, Marcos M. García-Guimaraes, Alberto Vera, Fernando Rivero, Javier Cuesta, Luis J. Jiménez-Borreguero, Alberto Cecconi, Albert Duran-Cambra, Manel Taurón, Judith Alonso, Héctor Bueno, María Villalba-Orero, Jose Antonio Enríquez, Simon C. Robson, Fernando Alfonso, Francisco Sánchez-Madrid, José Martínez-González, Pilar Martín
BACKGROUND Cytochrome P450 family 8 subfamily B member 1 (CYP8B1) generates 12α-hydroxylated bile acids (BAs) that are associated with insulin resistance in humans.METHODS To determine whether reduced CYP8B1 activity improves insulin sensitivity, we sequenced CYP8B1 in individuals without diabetes and identified carriers of complete loss-of-function (CLOF) mutations utilizing functional assays.RESULTS Mutation carriers had lower plasma 12α-hydroxylated/non–12α-hydroxylated BA and cholic acid (CA)/chenodeoxycholic acid (CDCA) ratios compared with age-, sex-, and BMI-matched controls. During insulin clamps, hepatic glucose production was suppressed to a similar magnitude by insulin, but glucose infusion rates to maintain euglycemia were higher in mutation carriers, indicating increased peripheral insulin sensitivity. Consistently, a polymorphic CLOF CYP8B1 mutation associated with lower fasting insulin in the AMP-T2D-GENES study. Exposure of primary human muscle cells to mutation-carrier CA/CDCA ratios demonstrated increased FOXO1 activity, and upregulation of both insulin signaling and glucose uptake, which were mediated by increased CDCA. Inhibition of FOXO1 attenuated the CDCA-mediated increase in muscle insulin signaling and glucose uptake. We found that reduced CYP8B1 activity associates with increased insulin sensitivity in humans.CONCLUSION Our findings suggest that increased circulatory CDCA due to reduced CYP8B1 activity increases skeletal muscle insulin sensitivity, contributing to increased whole-body insulin sensitization.FUNDING Biomedical Research Council/National Medical Research Council of Singapore.
Shiqi Zhong, Raphael Chèvre, David Castaño Mayan, Maria Corlianò, Blake J. Cochran, Kai Ping Sem, Theo H. van Dijk, Jianhe Peng, Liang Juin Tan, Siddesh V. Hartimath, Boominathan Ramasamy, Peter Cheng, Albert K. Groen, Folkert Kuipers, Julian L. Goggi, Chester Drum, Rob M. van Dam, Ru San Tan, Kerry-Anne Rye, Michael R. Hayden, Ching-Yu Cheng, Shaji Chacko, Jason Flannick, Xueling Sim, Hong Chang Tan, Roshni R. Singaraja
Spinal muscular atrophy (SMA) is a neuromuscular disorder due to degeneration of spinal cord motor neurons caused by deficiency of the ubiquitously expressed SMN protein. Here, we present a retinal vascular defect in patients, recapitulated in SMA transgenic mice, driven by failure of angiogenesis and maturation of blood vessels. Importantly, the retinal vascular phenotype was rescued by early, systemic SMN restoration therapy in SMA mice. We also demonstrate in patients an unfavorable imbalance between endothelial injury and repair, as indicated by increased circulating endothelial cell counts and decreased endothelial progenitor cell counts in blood circulation. The cellular markers of endothelial injury were associated with disease severity and improved following SMN restoration treatment in cultured endothelial cells from patients. Finally, we demonstrated autonomous defects in angiogenesis and blood vessel formation, secondary to SMN deficiency in cultured human and mouse endothelial cells, as the underlying cellular mechanism of microvascular pathology. Our cellular and vascular biomarker findings indicate microvasculopathy as a fundamental feature of SMA. Our findings provide mechanistic insights into previously described SMA microvascular complications, and highlight the functional role of SMN in the periphery, including the vascular system, where deficiency of SMN can be addressed by systemic SMN-restoring treatment.
Haiyan Zhou, Ying Hong, Mariacristina Scoto, Alison Thomson, Emma Pead, Tom MacGillivray, Elena Hernandez-Gerez, Francesco Catapano, Jinhong Meng, Qiang Zhang, Gillian Hunter, Hannah K. Shorrock, Thomas K. Ng, Abedallah Hamida, Mathilde Sanson, Giovanni Baranello, Kevin Howell, Thomas H. Gillingwater, Paul Brogan, Dorothy A. Thompson, Simon H. Parson, Francesco Muntoni
Normal-tension glaucoma (NTG) is a heterogeneous disease characterized by retinal ganglion cell (RGC) death leading to cupping of the optic nerve head and visual field loss at normal intraocular pressure (IOP). The pathogenesis of NTG remains unclear. Here, we describe a single nucleotide mutation in exon 2 of the methyltransferase-like 23 (METTL23) gene identified in 3 generations of a Japanese family with NTG. This mutation caused METTL23 mRNA aberrant splicing, which abolished normal protein production and altered subcellular localization. Mettl23–knock-in (Mettl23+/G and Mettl23G/G) and -knockout (Mettl23+/– and Mettl23–/–) mice developed a glaucoma phenotype without elevated IOP. METTL23 is a histone arginine methyltransferase expressed in murine and macaque RGCs. However, the novel mutation reduced METTL23 expression in RGCs of Mettl23G/G mice, which recapitulated both clinical and biological phenotypes. Moreover, our findings demonstrated that METTL23 catalyzed the dimethylation of H3R17 in the retina and was required for the transcription of pS2, an estrogen receptor α target gene that was critical for RGC homeostasis through the negative regulation of NF-κB–mediated TNF-α and IL-1β feedback. These findings suggest an etiologic role of METTL23 in NTG with tissue-specific pathology.
Yang Pan, Akiko Suga, Itaru Kimura, Chojiro Kimura, Yuriko Minegishi, Mao Nakayama, Kazutoshi Yoshitake, Daisuke Iejima, Naoko Minematsu, Megumi Yamamoto, Fumihiko Mabuchi, Mitsuko Takamoto, Yukihiro Shiga, Makoto Araie, Kenji Kashiwagi, Makoto Aihara, Toru Nakazawa, Takeshi Iwata
An effective adaptive immune response depends on the organized architecture of secondary lymphoid organs, including the lymph nodes (LNs). While the cellular composition and microanatomy of LNs under steady state are well defined, the impact of chronic tissue inflammation on the structure and function of draining LNs is incompletely understood. Here we showed that Mycobacterium tuberculosis infection remodeled LN architecture by increasing the number and paracortical translocation of B cells. The formation of paracortical B lymphocyte and CD35+ follicular dendritic cell clusters dispersed CCL21-producing fibroblastic reticular cells and segregated pathogen-containing myeloid cells from antigen-specific CD4+ T cells. Depletion of B cells restored the chemokine and lymphoid structure and reduced bacterial burdens in LNs of the chronically infected mice. Importantly, this remodeling process impaired activation of naive CD4+ T cells in response to mycobacterial and unrelated antigens during chronic tuberculosis infection. Our studies reveal a mechanism in the regulation of LN microanatomy during inflammation and identify B cells as a critical element limiting the T cell response to persistent intracellular infection in LNs.
Lina Daniel, Nayan D. Bhattacharyya, Claudio Counoupas, Yi Cai, Xinchun Chen, James A. Triccas, Warwick J. Britton, Carl G. Feng
Abdominal aortic aneurysm (AAA) is a life-threatening vascular disease. BAF60c, a unique subunit of the SWItch/sucrose nonfermentable (SWI/SNF) chromatin remodeling complex, is critical for cardiac and skeletal myogenesis, yet little is known about its function in the vasculature and, specifically, in AAA pathogenesis. Here, we found that BAF60c was downregulated in human and mouse AAA tissues, with primary staining to vascular smooth muscle cells (VSMCs), confirmed by single-cell RNA-sequencing. In vivo studies revealed that VSMC-specific knockout of Baf60c significantly aggravated both angiotensin II– (Ang II–) and elastase-induced AAA formation in mice, with a significant increase in elastin degradation, inflammatory cell infiltration, VSMC phenotypic switch, and apoptosis. In vitro studies showed that BAF60c knockdown in VSMCs resulted in loss of contractile phenotype, increased VSMC inflammation, and apoptosis. Mechanistically, we demonstrated that BAF60c preserved VSMC contractile phenotype by strengthening serum response factor (SRF) association with its coactivator P300 and the SWI/SNF complex and suppressing VSMC inflammation by promoting a repressive chromatin state of NF-κB target genes as well as preventing VSMC apoptosis through transcriptional activation of KLF5-dependent B cell lymphoma 2 (BCL2) expression. Our identification of the essential role of BAF60c in preserving VSMC homeostasis expands its therapeutic potential in preventing and treating AAA.
Guizhen Zhao, Yang Zhao, Haocheng Lu, Ziyi Chang, Hongyu Liu, Huilun Wang, Wenying Liang, Yuhao Liu, Tianqing Zhu, Oren Rom, Yanhong Guo, Lin Chang, Bo Yang, Minerva T. Garcia-Barrio, Jiandie D. Lin, Y. Eugene Chen, Jifeng Zhang
SAMD9 and SAMD9L germline mutations have recently emerged as a new class of predispositions to pediatric myeloid neoplasms. Patients commonly have impaired hematopoiesis, hypocellular marrows, and a greater risk of developing clonal chromosome 7 deletions leading to MDS and AML. We recently demonstrated that expressing SAMD9 or SAMD9L mutations in hematopoietic cells suppresses their proliferation and induces cell death. Here, we generated a mouse model that conditionally expresses mutant Samd9l to assess the in vivo impact on hematopoiesis. Using a range of in vivo and ex vivo assays, we showed that cells with heterozygous Samd9l mutations have impaired stemness relative to wild-type counterparts, which was exacerbated by inflammatory stimuli, and ultimately led to bone marrow hypocellularity. Genomic and phenotypic analyses recapitulated many of the hematopoietic cellular phenotypes observed in patients with SAMD9 or SAMD9L mutations, including lymphopenia, and pinpointed TGF-β as a potential targetable pathway. Further, we observed nonrandom genetic deletion of the mutant Samd9l locus on mouse chromosome 6, mimicking chromosome 7 deletions observed in patients. Collectively, our study has enhanced our understanding of mutant Samd9l hematopoietic phenotypes, emphasized the synergistic role of inflammation in exaggerating the associated hematopoietic defects, and provided insights into potential therapeutic options for patients.
Sherif Abdelhamed, Melvin E. Thomas III, Tamara Westover, Masayuki Umeda, Emily Xiong, Chandra Rolle, Michael P. Walsh, Huiyun Wu, Jason R. Schwartz, Virginia Valentine, Marcus Valentine, Stanley Pounds, Jing Ma, Laura J. Janke, Jeffery M. Klco
Background Immune exhaustion and senescence are dominant dysfunctional states of effector T cells and major hurdles for the success of cancer immunotherapy. In the current study, we characterized how acute myeloid leukemia (AML) promotes the generation of senescent-like CD8+ T cells and whether they have prognostic relevance.METHODS We analyzed NanoString, bulk RNA-Seq and single-cell RNA-Seq data from independent clinical cohorts comprising 1,896 patients treated with chemotherapy and/or immune checkpoint blockade (ICB).Results We show that senescent-like bone marrow CD8+ T cells were impaired in killing autologous AML blasts and that their proportion negatively correlated with overall survival (OS). We defined what we believe to be new immune effector dysfunction (IED) signatures using 2 gene expression profiling platforms and reported that IED scores correlated with adverse-risk molecular lesions, stemness, and poor outcomes; these scores were a more powerful predictor of OS than 2017-ELN risk or leukemia stem cell (LSC17) scores. IED expression signatures also identified an ICB-unresponsive tumor microenvironment and predicted significantly shorter OS.Conclusion The IED scores provided improved AML-risk stratification and could facilitate the delivery of personalized immunotherapies to patients who are most likely to benefit.TRIAL REGISTRATION ClinicalTrials.gov; NCT02845297.FUNDING John and Lucille van Geest Foundation, Nottingham Trent University’s Health & Wellbeing Strategic Research Theme, NIH/NCI P01CA225618, Genentech-imCORE ML40354, Qatar National Research Fund (NPRP8-2297-3-494).
Sergio Rutella, Jayakumar Vadakekolathu, Francesco Mazziotta, Stephen Reeder, Tung-On Yau, Rupkatha Mukhopadhyay, Benjamin Dickins, Heidi Altmann, Michael Kramer, Hanna A. Knaus, Bruce R. Blazar, Vedran Radojcic, Joshua F. Zeidner, Andrea Arruda, Bofei Wang, Hussein A. Abbas, Mark D. Minden, Sarah K. Tasian, Martin Bornhäuser, Ivana Gojo, Leo Luznik
The molecular mechanisms underlying obesity-induced increases in β cell mass and the resulting β cell dysfunction need to be elucidated further. Our study revealed that GPR92, expressed in islet macrophages, is modulated by dietary interventions in metabolic tissues. Therefore, we aimed to define the role of GPR92 in islet inflammation by using a high-fat diet–induced (HFD-induced) obese mouse model. GPR92-KO mice exhibited glucose intolerance and reduced insulin levels — despite the enlarged pancreatic islets — as well as increased islet macrophage content and inflammation level compared with WT mice. These results indicate that the lack of GPR92 in islet macrophages can cause β cell dysfunction, leading to disrupted glucose homeostasis. Alternatively, stimulation with the GPR92 agonist farnesyl pyrophosphate results in the inhibition of HFD-induced islet inflammation and increased insulin secretion in WT mice, but not in GPR92-KO mice. Thus, our study suggests that GPR92 can be a potential target to alleviate β cell dysfunction via the inhibition of islet inflammation associated with the progression of diabetes.
Camila O. de Souza, Vivian A. Paschoal, Xuenan Sun, Lavanya Vishvanath, Qianbin Zhang, Mengle Shao, Toshiharu Onodera, Shiuhwei Chen, Nolwenn Joffin, Lorena M.A. Bueno, Rana K. Gupta, Da Young Oh
During cutaneous tick attachment, the feeding cavity becomes a site of transmission for tick salivary compounds and tick-borne pathogens. However, the immunological consequences of tick feeding for human skin remain unclear. Here, we assessed human skin and blood samples upon tick bite and developed a human skin explant model mimicking Ixodes ricinus bites and tick-borne pathogen infection. Following tick attachment, we observed rapidly occurring patterns of immunomodulation, including increases in neutrophils and cutaneous B and T cells. T cells upregulated tissue residency markers, while lymphocytic cytokine production was impaired. In early stages of Borrelia burgdorferi model infections, we detected strain-specific immune responses and close spatial relationships between macrophages and spirochetes. Preincubation of spirochetes with tick salivary gland extracts hampered accumulation of immune cells and increased spirochete loads. Collectively, we showed that tick feeding exerts profound changes on the skin immune network that interfere with the primary response against tick-borne pathogens.
Johanna Strobl, Verena Mündler, Sophie Müller, Anna Gindl, Sara Berent, Anna-Margarita Schötta, Lisa Kleissl, Clement Staud, Anna Redl, Luisa Unterluggauer, Ana E. Aguilar González, Sophie T. Weninger, Denise Atzmüller, Romana Klasinc, Gerold Stanek, Mateusz Markowicz, Hannes Stockinger, Georg Stary
Background Neuroendocrine prostate cancer (NEPC) is an aggressive subtype, the presence of which changes the prognosis and management of metastatic prostate cancer.Methods We performed analytical validation of a Circulating Tumor Cell (CTC) multiplex RNA qPCR assay to identify the limit of quantification (LOQ) in cell lines, synthetic cDNA, and patient samples. We next profiled 116 longitudinal samples from a prospectively collected institutional cohort of 17 patients with metastatic prostate cancer (7 NEPC, 10 adenocarcinoma) as well as 265 samples from 139 patients enrolled in 3 adenocarcinoma phase II trials of androgen receptor signaling inhibitors (ARSIs). We assessed a NEPC liquid biomarker via the presence of neuroendocrine markers and the absence of androgen receptor (AR) target genes.Results Using the analytical validation LOQ, liquid biomarker NEPC detection in the longitudinal cohort had a per-sample sensitivity of 51.35% and a specificity of 91.14%. However, when we incorporated the serial information from multiple liquid biopsies per patient, a unique aspect of this study, the per-patient predictions were 100% accurate, with a receiver-operating-curve (ROC) AUC of 1. In the adenocarcinoma ARSI trials, the presence of neuroendocrine markers, even while AR target gene expression was retained, was a strong negative prognostic factor.Conclusion Our analytically validated CTC biomarker can detect NEPC with high diagnostic accuracy when leveraging serial samples that are only feasible using liquid biopsies. Patients with expression of NE genes while retaining AR-target gene expression may indicate the transition to neuroendocrine differentiation, with clinical characteristics consistent with this phenotype.Funding NIH (DP2 OD030734, 1UH2CA260389, R01CA247479, and P30 CA014520), Department of Defense (PC190039 and PC200334), and Prostate Cancer Foundation (Movember Foundation — PCF Challenge Award).
Shuang G. Zhao, Jamie M. Sperger, Jennifer L. Schehr, Rana R. McKay, Hamid Emamekhoo, Anupama Singh, Zachery D. Schultz, Rory M. Bade, Charlotte N. Stahlfeld, Cole S. Gilsdorf, Camila I. Hernandez, Serena K. Wolfe, Richel D. Mayberry, Hannah M. Krause, Matt Bootsma, Kyle T. Helzer, Nicholas Rydzewski, Hamza Bakhtiar, Yue Shi, Grace Blitzer, Christos E. Kyriakopoulos, David Kosoff, Xiao X. Wei, John Floberg, Nan Sethakorn, Marina Sharifi, Paul M. Harari, Wei Huang, Himisha Beltran, Toni K. Choueiri, Howard I. Scher, Dana E. Rathkopf, Susan Halabi, Andrew J. Armstrong, David J. Beebe, Menggang Yu, Kaitlin E. Sundling, Mary-Ellen Taplin, Joshua M. Lang
Background Studies in cell cultures and rodents suggest that TLR4 is involved in the pathogenesis of insulin resistance, but direct data in humans are limited. We tested the hypothesis that pharmacologic blockade of TLR4 with the competitive inhibitor eritoran would improve insulin resistance in humans.Methods In protocol I, 10 lean, healthy individuals received the following 72-hour i.v. infusions in a randomized crossover design: saline (30 mL/h) plus vehicle; Intralipid (30 mL/h) plus vehicle; or Intralipid (30 mL/h) plus eritoran (12 mg i.v. every 12 hours). In protocol II, also a randomized crossover design, 9 nondiabetic individuals with obesity received eritoran or vehicle for 72 hours. The effect of eritoran was assessed with euglycemic hyperinsulinemic clamps.Results In protocol I, lipid infusion significantly decreased peripheral insulin sensitivity (M value) by 14% and increased fasting plasma glucose (FPG) concentrations, fasting plasma insulin (FPI) concentrations, and the homeostatic model assessment of insulin resistance (HOMA-IR) index by 7%, 22%, and 26%, respectively. Eritoran did not prevent lipid-induced alterations of these metabolic parameters. Eritoran also failed to improve any baseline metabolic parameters (M, FPG, FPI, HOMA-IR) in individuals with obesity and insulin resistance (protocol II).Conclusions Acute TLR4 inhibition with eritoran did not protect against lipid-induced insulin resistance. Short-term eritoran administration also failed to improve obesity-associated insulin resistance. These data do not support a role for TLR4 in insulin resistance. Future studies with a different class of TLR4 inhibitors, longer drug exposure, and/or lipid-enhancing interventions richer in saturated fats may be needed to further clarify the role of TLR4 in metabolic dysfunction in humans.Trial registration ClinicalTrials.gov NCT02321111 and NCT02267317.Funding NIH grants R01DK080157, P30AG044271, P30AG013319, and UL1TR002645.
Hanyu Liang, Nattapol Sathavarodom, Claudia Colmenares, Jonathan Gelfond, Sara E. Espinoza, Vinutha Ganapathy, Nicolas Musi
BACKGROUND A pilot, single-center study showed that first-degree relatives of probands with nonalcoholic fatty liver disease (NAFLD) cirrhosis have a high risk of advanced fibrosis. We aimed to validate these findings using 2 independent cohorts from the US and Europe.METHODS This prospective study included probands with NAFLD with advanced fibrosis, NAFLD without advanced fibrosis, and non-NAFLD, with at least 1 first-degree relative. A total of 396 first-degree relatives — 220 in a derivation cohort and 176 in a validation cohort — were enrolled in the study, and liver fibrosis was evaluated using magnetic resonance elastography and other noninvasive imaging modalities. The primary outcome was prevalence of advanced fibrosis in first-degree relatives.RESULTS Prevalence of advanced fibrosis in first-degree relatives of probands with NAFLD with advanced fibrosis, NAFLD without advanced fibrosis, and non-NAFLD was 15.6%, 5.9%, and 1.3%, respectively (P = 0.002), in the derivation cohort, and 14.0%, 2.6%, and 1.3%, respectively (P = 0.004), in the validation cohort. In multivariable-adjusted logistic regression models, age of ≥50 years (adjusted OR [aOR]: 2.63, 95% CI 1.0–6.7), male sex (aOR: 3.79, 95% CI 1.6–9.2), diabetes mellitus (aOR: 3.37, 95% CI 1.3–9), and a first-degree relative with NAFLD with advanced fibrosis (aOR: 11.8, 95% CI 2.5–57) were significant predictors of presence of advanced fibrosis (all P < 0.05).CONCLUSION First-degree relatives of probands with NAFLD with advanced fibrosis have significantly increased risk of advanced fibrosis. Routine screening should be done in the first-degree relatives of patients with advanced fibrosis.FUNDING Supported by NCATS (5UL1TR001442), NIDDK (U01DK061734, U01DK130190, R01DK106419, R01DK121378, R01DK124318, P30DK120515, K23DK119460), NHLBI (P01HL147835), and NIAAA (U01AA029019); Academy of Finland grant 309263; the Novo Nordisk, EVO, and Sigrid Jusélius Foundations; and the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement 777377. This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation program and the EFPIA.
Nobuharu Tamaki, Noora Ahlholm, Panu K. Luukkonen, Kimmo Porthan, Suzanne R. Sharpton, Veeral Ajmera, Yuko Kono, Shravan Dave, Aijaz Ahmed, Vinay Sundaram, Michael J. Wilkinson, Heather Patton, Hersh Gupta, Vanessa Cervantes, Christie Hernandez, Scarlett J. Lopez, Ria Loomba, Amanda Baumgartner, Lisa Richards, Perttu E.T. Arkkila, Katriina Nemes, Helena Isoniemi, Hannele Yki-Järvinen, Rohit Loomba