Samuel Klein
Stem/progenitor cells ensure tissue and organism homeostasis and might represent a frequent target of transformation. Although these cells are potentially immortal, their life span is restrained by signaling pathways (p19-p53; p16-Rb) that are activated by DNA damage (telomere dysfunction, environmental stresses) and lead to senescence or apoptosis. Execution of these checkpoint programs might lead to stem cell depletion and organism aging, while their inactivation contributes to tumor formation.
Pier Giuseppe Pelicci
Cells entering a state of senescence undergo a permanent cell cycle arrest, accompanied by a set of functional and morphological changes. Senescence of cells occurs following an extended period of proliferation in culture or in response to various physiologic stresses, yet little is known about the role this phenomenon plays in vivo. The study of senescence has focused largely on its hypothesized role as a barrier to extended cell division, governed by a division-counting mechanism in the form of telomere length. Here, we discuss the biological functions of cellular senescence and suggest that it should be viewed in terms of its role as a general cellular stress response program, rather than strictly as a barrier to unlimited cycles of cell growth and division. We also discuss the relative roles played by telomere shortening and telomere uncapping in the induction of senescence.
Ittai Ben-Porath, Robert A. Weinberg
VEGF is a prototype angiogenic factor, but recent evidence indicates that this growth factor also has direct effects on neural cells. Abnormal regulation of VEGF expression has now been implicated in several neurodegenerative disorders, including motoneuron degeneration. This has stimulated an increasing interest in assessing the therapeutic potential of VEGF as a neuroprotective agent for such neurodegenerative disorders.
Erik Storkebaum, Peter Carmeliet
While it has long been known that the reduction of nitrite to nitric oxide (NO) forms iron-nitrosyl-myoglobin and is the basis of meat curing, a greater biological activity of the nitrite anion has only recently been appreciated. In the stomach, NO is formed from acidic reduction of nitrite and increases mucous barrier thickness and gastric blood flow (see the related study beginning on page 106). Nitrite levels in blood reflect NO production from endothelial NO synthase enzymes, and recent data suggest that nitrite contributes to blood flow regulation by reaction with deoxygenated hemoglobin and tissue heme proteins to form NO.
Mark T. Gladwin
Kaposi sarcoma–associated herpesvirus (KSHV) can establish latent infection in host cells. The latently infected cells can survive and proliferate with a few viral genes expressed. However, in some Kaposi sarcoma cells, KSHV undergoes a productive life cycle and causes cell lysis. A new study (see the related article beginning on page 124) demonstrates that, after KSHV infection or introduction of viral plasmids into host cells, viral DNA is rapidly lost. Lytic virus production with ensuing infections could balance the loss of the viral plasmids to maintain the virus in cancer cells.
Chen-Yu Wang, Bill Sugden
Jaundice, which is caused by accumulation of bilirubin, is extremely common in newborn infants. Phototherapy is an effective treatment, but a drug therapy would also be desirable. A Chinese herbal remedy for jaundice called Yin Zhi Huang is now shown to activate a liver receptor that enhances the clearance of bilirubin (see the related article beginning on page 137). This discovery could lead to improved pharmaceutical treatments for neonatal jaundice.
Mitchell A. Lazar
IGF-1 and growth hormone (GH) interact with insulin to modulate its control of carbohydrate metabolism. A new study (see the related article beginning on page 96) shows that blocking the effect of GH in the presence of low serum IGF-1 concentrations enhances insulin sensitivity.
David R. Clemmons
Acute lung injury syndromes remain common causes of morbidity and mortality in adults and children. Cellular and physiologic mechanisms maintaining pulmonary homeostasis during lung injury remain poorly understood. In the present study, the Stat-3 gene was selectively deleted in respiratory epithelial cells by conditional expression of Cre-recombinase under control of the surfactant protein C gene promoter. Cell-selective deletion of Stat-3 in respiratory epithelial cells did not alter prenatal lung morphogenesis or postnatal lung function. However, exposure of adult Stat-3–deleted mice to 95% oxygen caused a more rapidly progressive lung injury associated with alveolar capillary leak and acute respiratory distress. Epithelial cell injury and inflammatory responses were increased in the Stat-3–deleted mice. Surfactant proteins and lipids were decreased or absent in alveolar lavage material. Intratracheal treatment with exogenous surfactant protein B improved survival and lung histology in Stat-3–deleted mice during hyperoxia. Expression of Stat-3 in respiratory epithelial cells is not required for lung formation, but plays a critical role in maintenance of surfactant homeostasis and lung function during oxygen injury.
Isamu Hokuto, Machiko Ikegami, Mitsuhiro Yoshida, Kiyoshi Takeda, Shizuo Akira, Anne-Karina T. Perl, William M. Hull, Susan E. Wert, Jeffrey A. Whitsett
A central tenet of fibrinolysis is that tissue plasminogen activator–dependent (t-PA– dependent) conversion of plasminogen to active plasmin requires the presence of the cofactor/substrate fibrin. However, previous in vitro studies have suggested that the endothelial cell surface protein annexin II can stimulate t-PA–mediated plasminogen activation in the complete absence of fibrin. Here, homozygous annexin II–null mice displayed deposition of fibrin in the microvasculature and incomplete clearance of injury-induced arterial thrombi. While these animals demonstrated normal lysis of a fibrin-containing plasma clot, t-PA–dependent plasmin generation at the endothelial cell surface was markedly deficient. Directed migration of annexin II–null endothelial cells through fibrin and collagen lattices in vitro was also reduced, and an annexin II peptide mimicking sequences necessary for t-PA binding blocked endothelial cell invasion of Matrigel implants in wild-type mice. In addition, annexin II–deficient mice displayed markedly diminished neovascularization of fibroblast growth factor–stimulated cornea and of oxygen-primed neonatal retina. Capillary sprouting from annexin II–deficient aortic ring explants was markedly reduced in association with severe impairment of activation of metalloproteinase-9 and -13. These data establish annexin II as a regulator of cell surface plasmin generation and reveal that impaired endothelial cell fibrinolytic activity constitutes a barrier to effective neoangiogenesis.
Qi Ling, Andrew T. Jacovina, Arunkumar Deora, Maria Febbraio, Ronit Simantov, Roy L. Silverstein, Barbara Hempstead, Willie H. Mark, Katherine A. Hajjar
Immunological synapses are organized cell-cell junctions between T lymphocytes and APCs composed of an adhesion ring, the peripheral supramolecular activation cluster (pSMAC), and a central T cell receptor cluster, the central supramolecular activation cluster (cSMAC). In CD8+ cytotoxic T lymphocytes, the immunological synapse is thought to facilitate specific killing by confining cytotoxic agents to the synaptic cleft. We have investigated the interaction of human CTLs and helper T cells with supported planar bilayers containing ICAM-1. This artificial substrate provides identical ligands to CD4+ and CD8+ T cells, allowing a quantitative comparison. We found that cytotoxic T lymphocytes form a ring junction similar to a pSMAC in response to high surface densities of ICAM-1 in the planar bilayer. MICA, a ligand for NKG2D, facilitated the ring junction formation at lower surface densities of ICAM-1. ICAM-1 and MICA are upregulated in tissues by inflammation- and stress-associated signaling, respectively. Activated CD8+ T cells formed fivefold more ring junctions than did activated CD4+ T cells. The ring junction contained lymphocyte function associated antigen-1 and talin, but did not trigger polarization and granule translocation to the interface. This result has specific implications for the mechanism of effective CTL hunting for antigen in tissues. Abnormalities in this process may alter CTL reactivity.
Kristina Somersalo, Nadja Anikeeva, Tasha N. Sims, V. Kaye Thomas, Roland K. Strong, Thomas Spies, Tatiana Lebedeva, Yuri Sykulev, Michael L. Dustin
The TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis of tumor cells but not most normal cells. Its role in hepatic cell death and hepatic diseases is not clear. In vitro studies suggest that murine hepatocytes are not sensitive to TRAIL-induced apoptosis, indicating that TRAIL may not mediate hepatic cell death. Using two experimental models of hepatitis, we found that hepatic cell death in vivo was dramatically reduced in TRAIL-deficient mice and mice treated with a blocking TRAIL receptor. Although both TRAIL and its death receptor 5 were constitutively expressed in the liver, TRAIL expression by immune cells alone was sufficient to restore the sensitivity of TRAIL-deficient mice to hepatitis. Thus, TRAIL plays a crucial role in hepatic cell death and hepatic inflammation.
Shi-Jun Zheng, Pu Wang, Galit Tsabary, Youhai H. Chen
Avicins are proapoptotic and anti-inflammatory triterpene electrophiles isolated from an Australian desert tree, Acacia victoriae. The presence of two α,β unsaturated carbonyl groups (Michael reaction sites) in the side chain of the avicin molecule prompted us to study its effects on NF-E2–related factor 2 (Nrf2), a redox-regulated transcription factor that controls the expression of a battery of detoxification and antioxidant proteins via its binding to antioxidant response element (ARE). Avicin D–treated Hep G2 cells showed translocation of Nrf2 into the nucleus and a time-dependent increase in ARE activity. These properties were sensitive to DTT, suggesting that avicins affect one or more critical cysteine residues, probably on the Keap1 molecule. Downstream of ARE, an activation of a battery of stress-induced proteins occurred. The implications of these findings were evaluated in vivo in mouse skin exposed to an ancient stressor, UV light. Avicins inhibited epidermal hyperplasia, reduced p53 mutation, enhanced apoptosis, decreased generation of 8-hydroxy-2′-deoxyguanosine, and enhanced expression of NADPH:quinone oxidoreductase 1 and heme oxygenase-1. These data, combined with our earlier published work, demonstrate that avicins represent a new class of plant stress metabolites capable of activating stress adaptation and suppressing proinflammatory components of the innate immune system in human cells by redox regulation. The relevance for treatment of clinical diseases in which stress responses are dysfunctional or deficient is discussed.
Valsala Haridas, Margaret Hanausek, Goshi Nishimura, Holly Soehnge, Amos Gaikwad, Maciej Narog, Erick Spears, Robert Zoltaszek, Zbigniew Walaszek, Jordan U. Gutterman
Viruses can cause but can also prevent autoimmune disease. This dualism has certainly hampered attempts to establish a causal relationship between viral infections and type 1 diabetes (T1D). To develop a better mechanistic understanding of how viruses can influence the development of autoimmune disease, we exposed prediabetic mice to various viral infections. We used the well-established NOD and transgenic RIP-LCMV models of autoimmune diabetes. In both cases, infection with the lymphocytic choriomeningitis virus (LCMV) completely abrogated the diabetic process. Interestingly, such therapeutic viral infections resulted in a rapid recruitment of T lymphocytes from the islet infiltrate to the pancreatic draining lymph node, where increased apoptosis was occurring. In both models this was associated with a selective and extensive expression of the chemokine IP-10 (CXCL10), which predominantly attracts activated T lymphocytes, in the pancreatic draining lymph node, and in RIP-LCMV mice it depended on the viral antigenic load. In RIP-LCMV mice, blockade of TNF-α or IFN-γ in vivo abolished the prevention of T1D. Thus, virally induced proinflammatory cytokines and chemokines can influence the ongoing autoaggressive process beneficially at the preclinical stage, if produced at the correct location, time, and levels.
Urs Christen, Dirk Benke, Tom Wolfe, Evelyn Rodrigo, Antje Rhode, Anna C. Hughes, Michael B.A. Oldstone, Matthias G. von Herrath
Diabetic hyperglycemia increases ischemic brain damage in experimental animals and humans. The mechanisms are unclear but may involve enhanced apoptosis in penumbral regions. Estrogen is an established neuroprotectant in experimental stroke. Our previous study demonstrated that female diabetic db/db mice suffered less damage following cerebral hypoxia-ischemia (H/I) than male db/db mice. Here we investigated the effects of diabetes and estrogen apoptotic gene expression following H/I. Female db/db and nondiabetic (+/?) mice were ovariectomized (OVX) and treated with estrogen or vehicle prior to H/I; brains were analyzed for damage and bcl-2 family gene expression. OVX increased ischemic damage in +/? mice; estrogen reduced tissue injury and enhanced antiapoptotic gene expression (bcl-2 and bfl-1). db/db mice demonstrated more damage, without increased bcl-2 mRNA; bfl-1 expression appeared at 48 hours of recovery associated with infarction. To our knowledge, this is the first description of bfl-1 in the brain with localization to microglia and macrophages. Early induction of bfl-1 expression in +/? mouse brain was associated with microglia; delayed bfl-1 expression in diabetic brain was in macrophages bordering the infarct. Furthermore, estrogen replacement stimulated early postischemic expression of bcl-2 and bfl-1 and reduced damage in normoglycemic animals but failed to protect the diabetic brain.
Liqun Zhang, Aji Nair, Kyle Krady, Christopher Corpe, Robert H. Bonneau, Ian A. Simpson, Susan J. Vannucci
Liver IGF-1–deficient (LID) mice have a 75% reduction in circulating IGF-1 levels and, as a result, a fourfold increase in growth hormone (GH) secretion. To block GH action, LID mice were crossed with GH antagonist (GHa) transgenic mice. Inactivation of GH action in the resulting LID + GHa mice led to decreased blood glucose and insulin levels and improved peripheral insulin sensitivity. Hyperinsulinemic-euglycemic clamp studies showed that LID mice exhibit severe insulin resistance. In contrast, expression of the GH antagonist transgene in LID + GHa mice led to enhanced insulin sensitivity and increased insulin-stimulated glucose uptake in muscle and white adipose tissue. Interestingly, LID + GHa mice exhibit a twofold increase in white adipose tissue mass, as well as increased levels of serum-free fatty acids and triglycerides, but no increase in the triglyceride content of liver and muscle. In conclusion, these results show that despite low levels of circulating IGF-1, insulin sensitivity in LID mice could be improved by inactivating GH action, suggesting that chronic elevation of GH levels plays a major role in insulin resistance. These results suggest that IGF-1 plays a role in maintaining a fine balance between GH and insulin to promote normal carbohydrate and lipid metabolism.
Shoshana Yakar, Jennifer Setser, Hong Zhao, Bethel Stannard, Martin Haluzik, Vaida Glatt, Mary L Bouxsein, John J. Kopchick, Derek LeRoith
Salivary nitrate from dietary or endogenous sources is reduced to nitrite by oral bacteria. In the acidic stomach, nitrite is further reduced to NO and related compounds, which have potential biological activity. We used an in vivo rat model as a bioassay to test effects of human saliva on gastric mucosal blood flow and mucus thickness. Gastric mucosal blood flow and mucus thickness were measured after topical administration of human saliva in HCl. The saliva was collected either after fasting (low in nitrite) or after ingestion of sodium nitrate (high in nitrite). In additional experiments, saliva was exchanged for sodium nitrite at different doses. Mucosal blood flow was increased after luminal application of nitrite-rich saliva, whereas fasting saliva had no effects. Also, mucus thickness increased in response to nitrite-rich saliva. The effects of nitrite-rich saliva were similar to those of topically applied sodium nitrite. Nitrite-mediated effects were associated with generation of NO and S-nitrosothiols. In addition, pretreatment with an inhibitor of guanylyl cyclase markedly inhibited nitrite-mediated effects on blood flow. We conclude that nitrite-containing human saliva given luminally increases gastric mucosal blood flow and mucus thickness in the rat. These effects are likely mediated through nonenzymatic generation of NO via activation of guanylyl cyclase. This supports a gastroprotective role of salivary nitrate/nitrite.
Håkan Björne, Joel Petersson, Mia Phillipson, Eddie Weitzberg, Lena Holm, Jon O. Lundberg
With trauma, sepsis, cancer, or uremia, animals or patients experience accelerated degradation of muscle protein in the ATP-ubiquitin-proteasome (Ub-P’some) system. The initial step in myofibrillar proteolysis is unknown because this proteolytic system does not break down actomyosin complexes or myofibrils, even though it degrades monomeric actin or myosin. Since cytokines or insulin resistance are common in catabolic states and will activate caspases, we examined whether caspase-3 would break down actomyosin. We found that recombinant caspase-3 cleaves actomyosin, producing a characteristic, approximately 14-kDa actin fragment and other proteins that are degraded by the Ub-P’some. In fact, limited actomyosin cleavage by caspase-3 yields a 125% increase in protein degradation by the Ub-P’some system. Serum deprivation of L6 muscle cells stimulates actin cleavage and proteolysis; insulin blocks these responses by a mechanism requiring PI3K. Cleaved actin fragments are present in muscles of rats with muscle atrophy from diabetes or chronic uremia. Accumulation of actin fragments and the rate of proteolysis in muscle stimulated by diabetes are suppressed by a caspase-3 inhibitor. Thus, in catabolic conditions, an initial step resulting in loss of muscle protein is activation of caspase-3, yielding proteins that are degraded by the Ub-P’some system. Therapeutic strategies could be designed to prevent these events.
Jie Du, Xiaonan Wang, Christiane Miereles, James L. Bailey, Richard Debigare, Bin Zheng, S. Russ Price, William E. Mitch
Kaposi sarcoma–associated (KS-associated) herpesvirus (KSHV) infection is linked to the development of both KS and several lymphoproliferative diseases. In all cases, the resulting tumor cells predominantly display latent viral infection. KS tumorigenesis requires ongoing lytic viral replication as well, however, for reasons that are unclear but have been suggested to involve the production of angiogenic or mitogenic factors by lytically infected cells. Here we demonstrate that proliferating cells infected with KSHV in vitro display a marked propensity to segregate latent viral genomes, with only a variable but small subpopulation being capable of stable episome maintenance. Stable maintenance is not due to the enhanced production of viral or host trans-acting factors, but is associated with cis-acting, epigenetic changes in the viral chromosome. These results indicate that acquisition of stable KSHV latency is a multistep process that proceeds with varying degrees of efficiency in different cell types. They also suggest an additional role for lytic replication in sustaining KS tumorigenesis: namely, the recruitment of new cells to latency to replace those that have segregated the viral episome.
Adam Grundhoff, Don Ganem
Yin Zhi Huang, a decoction of Yin Chin (Artemisia capillaris) and three other herbs, is widely used in Asia to prevent and treat neonatal jaundice. We recently identified the constitutive androstane receptor (CAR, NR1I3) as a key regulator of bilirubin clearance in the liver. Here we show that treatment of WT and humanized CAR transgenic mice with Yin Zhi Huang for 3 days accelerates the clearance of intravenously infused bilirubin. This effect is absent in CAR knockout animals. Expression of bilirubin glucuronyl transferase and other components of the bilirubin metabolism pathway is induced by Yin Zhi Huang treatment of WT mice or mice expressing only human CAR, but not CAR knockout animals. 6,7-Dimethylesculetin, a compound present in Yin Chin, activates CAR in primary hepatocytes from both WT and humanized CAR mice and accelerates bilirubin clearance in vivo. We conclude that CAR mediates the effects of Yin Zhi Huang on bilirubin clearance and that 6,7-dimethylesculetin is an active component of this herbal medicine. CAR is a potential target for the development of new drugs to treat neonatal, genetic, or acquired forms of jaundice.
Wendong Huang, Jun Zhang, David D. Moore