Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Brief Report

  • 166 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 15
  • 16
  • 17
  • Next →
Trib1 is a lipid- and myocardial infarction–associated gene that regulates hepatic lipogenesis and VLDL production in mice
Ralph Burkhardt, … , Jan L. Breslow, Daniel J. Rader
Ralph Burkhardt, … , Jan L. Breslow, Daniel J. Rader
Published November 15, 2010
Citation Information: J Clin Invest. 2010. https://doi.org/10.1172/JCI44213.
View: Text | PDF
Article has an altmetric score of 3

Trib1 is a lipid- and myocardial infarction–associated gene that regulates hepatic lipogenesis and VLDL production in mice

  • Text
  • PDF
Abstract

Recent genome-wide association studies have identified a genetic locus at human chromosome 8q24 as having minor alleles associated with lower levels of plasma triglyceride (TG) and LDL cholesterol (LDL-C), higher levels of HDL-C, as well as decreased risk for myocardial infarction. This locus contains only one annotated gene, tribbles homolog 1 (TRIB1), which has not previously been implicated in lipoprotein metabolism. Here we demonstrate a role for Trib1 as a regulator of lipoprotein metabolism in mice. Hepatic-specific overexpression of Trib1 reduced levels of plasma TG and cholesterol by reducing VLDL production; conversely, Trib1-knockout mice showed elevated levels of plasma TG and cholesterol due to increased VLDL production. Hepatic Trib1 expression was inversely associated with the expression of key lipogenic genes and measures of lipogenesis. Thus, we provide functional evidence for what we believe to be a novel gene regulating hepatic lipogenesis and VLDL production in mice that influences plasma lipids and risk for myocardial infarction in humans.

Authors

Ralph Burkhardt, Sue-Anne Toh, William R. Lagor, Andrew Birkeland, Michael Levin, Xiaoyu Li, Megan Robblee, Victor D. Fedorov, Masahiro Yamamoto, Takashi Satoh, Shizuo Akira, Sekar Kathiresan, Jan L. Breslow, Daniel J. Rader

×

Infusion of mature megakaryocytes into mice yields functional platelets
Rudy Fuentes, … , M. Anna Kowalska, Mortimer Poncz
Rudy Fuentes, … , M. Anna Kowalska, Mortimer Poncz
Published October 25, 2010
Citation Information: J Clin Invest. 2010. https://doi.org/10.1172/JCI43326.
View: Text | PDF
Article has an altmetric score of 3

Infusion of mature megakaryocytes into mice yields functional platelets

  • Text
  • PDF
Abstract

Thrombopoiesis, the process by which circulating platelets arise from megakaryocytes, remains incompletely understood. Prior studies suggest that megakaryocytes shed platelets in the pulmonary vasculature. To better understand thrombopoiesis and to develop a potential platelet transfusion strategy that is not dependent upon donors, of which there remains a shortage, we examined whether megakaryocytes infused into mice shed platelets. Infused megakaryocytes led to clinically relevant increases in platelet numbers. The released platelets were normal in size, displayed appropriate surface markers, and had a near-normal circulating half-life. The functionality of the donor-derived platelets was also demonstrated in vivo. The infused megakaryocytes mostly localized to the pulmonary vasculature, where they appeared to shed platelets. These data suggest that it may be unnecessary to generate platelets from ex vivo grown megakaryocytes to achieve clinically relevant increases in platelet numbers.

Authors

Rudy Fuentes, Yuhuan Wang, Jessica Hirsch, Cheng Wang, Lubica Rauova, G. Scott Worthen, M. Anna Kowalska, Mortimer Poncz

×

Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice
David M. Patrick, … , Eva van Rooij, Eric N. Olson
David M. Patrick, … , Eva van Rooij, Eric N. Olson
Published October 18, 2010
Citation Information: J Clin Invest. 2010. https://doi.org/10.1172/JCI43604.
View: Text | PDF
Article has an altmetric score of 12

Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice

  • Text
  • PDF
Abstract

MicroRNAs inhibit mRNA translation or promote mRNA degradation by binding complementary sequences in 3′ untranslated regions of target mRNAs. MicroRNA-21 (miR-21) is upregulated in response to cardiac stress, and its inhibition by a cholesterol-modified antagomir has been reported to prevent cardiac hypertrophy and fibrosis in rodents in response to pressure overload. In contrast, we have shown here that miR-21–null mice are normal and, in response to a variety of cardiac stresses, display cardiac hypertrophy, fibrosis, upregulation of stress-responsive cardiac genes, and loss of cardiac contractility comparable to wild-type littermates. Similarly, inhibition of miR-21 through intravenous delivery of a locked nucleic acid–modified (LNA-modified) antimiR oligonucleotide also failed to block the remodeling response of the heart to stress. We therefore conclude that miR-21 is not essential for pathological cardiac remodeling.

Authors

David M. Patrick, Rusty L. Montgomery, Xiaoxia Qi, Susanna Obad, Sakari Kauppinen, Joseph A. Hill, Eva van Rooij, Eric N. Olson

×

Defective migration of neuroendocrine GnRH cells in human arrhinencephalic conditions
Luis Teixeira, … , Anne-Lise Delezoide, Jean-Pierre Hardelin
Luis Teixeira, … , Anne-Lise Delezoide, Jean-Pierre Hardelin
Published September 13, 2010
Citation Information: J Clin Invest. 2010. https://doi.org/10.1172/JCI43699.
View: Text | PDF
Article has an altmetric score of 14

Defective migration of neuroendocrine GnRH cells in human arrhinencephalic conditions

  • Text
  • PDF
Abstract

Patients with Kallmann syndrome (KS) have hypogonadotropic hypogonadism caused by a deficiency of gonadotropin-releasing hormone (GnRH) and a defective sense of smell related to olfactory bulb aplasia. Based on the findings in a fetus affected by the X chromosome–linked form of the disease, it has been suggested that hypogonadism in KS results from the failed embryonic migration of neuroendocrine GnRH1 cells from the nasal epithelium to the forebrain. We asked whether this singular observation might extend to other developmental disorders that also include arrhinencephaly. We therefore studied the location of GnRH1 cells in fetuses affected by different arrhinencephalic disorders, specifically X-linked KS, CHARGE syndrome, trisomy 13, and trisomy 18, using immunohistochemistry. Few or no neuroendocrine GnRH1 cells were detected in the preoptic and hypothalamic regions of all arrhinencephalic fetuses, whereas large numbers of these cells were present in control fetuses. In all arrhinencephalic fetuses, many GnRH1 cells were present in the frontonasal region, the first part of their migratory path, as were interrupted olfactory nerve fibers that formed bilateral neuromas. Our findings define a pathological sequence whereby a lack of migration of neuroendocrine GnRH cells stems from the primary embryonic failure of peripheral olfactory structures. This can occur either alone, as in isolated KS, or as part of a pleiotropic disease, such as CHARGE syndrome, trisomy 13, and trisomy 18.

Authors

Luis Teixeira, Fabien Guimiot, Catherine Dodé, Catherine Fallet-Bianco, Robert P. Millar, Anne-Lise Delezoide, Jean-Pierre Hardelin

×

Dual function of MyD88 in RAS signaling and inflammation, leading to mouse and human cell transformation
Isabelle Coste, … , Serge Lebecque, Toufic Renno
Isabelle Coste, … , Serge Lebecque, Toufic Renno
Published September 13, 2010
Citation Information: J Clin Invest. 2010. https://doi.org/10.1172/JCI42771.
View: Text | PDF
Article has an altmetric score of 11

Dual function of MyD88 in RAS signaling and inflammation, leading to mouse and human cell transformation

  • Text
  • PDF
Abstract

Accumulating evidence points to inflammation as a promoter of carcinogenesis. MyD88 is an adaptor molecule in TLR and IL-1R signaling that was recently implicated in tumorigenesis through proinflammatory mechanisms. Here we have shown that MyD88 is also required in a cell-autonomous fashion for RAS-mediated carcinogenesis in mice in vivo and for MAPK activation and transformation in vitro. Mechanistically, MyD88 bound to the key MAPK, Erk, and prevented its inactivation by its phosphatase, MKP3, thereby amplifying the activation of the canonical RAS pathway. The relevance of this mechanism to human neoplasia was suggested by the finding that MyD88 was overexpressed and interacted with activated Erk in primary human cancer tissues. Collectively, these results show that in addition to its role in inflammation, MyD88 plays what we believe to be a crucial direct role in RAS signaling, cell-cycle control, and cell transformation.

Authors

Isabelle Coste, Katy Le Corf, Alain Kfoury, Isabelle Hmitou, Sabine Druillennec, Pierre Hainaut, Alain Eychene, Serge Lebecque, Toufic Renno

×

Reevaluation of the role of HDL in the anticoagulant activated protein C system in humans
Cecilia Oslakovic, … , Eva Norstrøm, Björn Dahlbäck
Cecilia Oslakovic, … , Eva Norstrøm, Björn Dahlbäck
Published April 12, 2010
Citation Information: J Clin Invest. 2010. https://doi.org/10.1172/JCI42260.
View: Text | PDF

Reevaluation of the role of HDL in the anticoagulant activated protein C system in humans

  • Text
  • PDF
Abstract

HDL has anti-atherogenic properties, and plasma levels of HDL cholesterol correlate inversely with risk of coronary artery disease. HDL reportedly functions as a cofactor to the anticoagulant activated protein C (APC) in the degradation of factor Va (FVa). The aim of the present study was to elucidate the mechanism by which HDL functions as cofactor to APC. Consistent with a previous report, HDL isolated from human plasma by ultracentrifugation was found to stimulate APC-mediated degradation of FVa. However, further purification of HDL by gel filtration revealed that the stimulating activity was not a property of HDL. Instead, the stimulating activity eluted completely separately from HDL in the high-molecular-weight void volume fractions. The active portion of these fractions stimulated FVa degradation by APC and supported the assembly of factor Xa and FVa into a functional prothrombinase complex. Both the procoagulant and anticoagulant activities were blocked by addition of annexin V, suggesting that the active portion was negatively charged phospholipid membranes. These results demonstrate that HDL does not stimulate the APC/protein S effect and that the activity previously reported to be a property of HDL is instead caused by contaminating negatively charged phospholipid membranes.

Authors

Cecilia Oslakovic, Eva Norstrøm, Björn Dahlbäck

×
  • ← Previous
  • 1
  • 2
  • …
  • 15
  • 16
  • 17
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 16 patents
Referenced in 1 Wikipedia pages
171 readers on Mendeley
See more details
Blogged by 2
Referenced in 1 Wikipedia pages
48 readers on Mendeley
See more details
Posted by 3 X users
Referenced in 3 patents
65 readers on Mendeley
See more details
Referenced in 3 patents
101 readers on Mendeley
See more details
Referenced in 2 patents
64 readers on Mendeley
See more details