Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Research Article

  • 25,472 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 120
  • 121
  • 122
  • …
  • 2547
  • 2548
  • Next →
Resting innate-like B cells leverage sustained Notch2/mTORC1 signaling to achieve rapid and mitosis-independent plasma cell differentiation
Brian T. Gaudette, … , Ivan Maillard, David Allman
Brian T. Gaudette, … , Ivan Maillard, David Allman
Published September 2, 2021
Citation Information: J Clin Invest. 2021;131(20):e151975. https://doi.org/10.1172/JCI151975.
View: Text | PDF
Article has an altmetric score of 1

Resting innate-like B cells leverage sustained Notch2/mTORC1 signaling to achieve rapid and mitosis-independent plasma cell differentiation

  • Text
  • PDF
Abstract

Little is known about how cells regulate and integrate distinct biosynthetic pathways governing differentiation and cell division. For B lineage cells it is widely accepted that activated cells must complete several rounds of mitosis before yielding antibody-secreting plasma cells. However, we report that marginal zone (MZ) B cells, innate-like naive B cells known to generate plasma cells rapidly in response to blood-borne bacteria, generate functional plasma cells despite cell-cycle arrest. Further, short-term Notch2 blockade in vivo reversed division-independent differentiation potential and decreased transcript abundance for numerous mTORC1- and Myc-regulated genes. Myc loss compromised plasma cell differentiation for MZ B cells, and reciprocally induced ectopic mTORC1 signaling in follicular B cells enabled division-independent differentiation and plasma cell–affiliated gene expression. We conclude that ongoing in situ Notch2/mTORC1 signaling in MZ B cells establishes a unique cellular state that enables rapid division-independent plasma cell differentiation.

Authors

Brian T. Gaudette, Carly J. Roman, Trini A. Ochoa, Daniela Gómez Atria, Derek D. Jones, Christian W. Siebel, Ivan Maillard, David Allman

×

Atrial natriuretic peptide promotes uterine decidualization and a TRAIL-dependent mechanism in spiral artery remodeling
Wei Zhang, … , Ningzheng Dong, Qingyu Wu
Wei Zhang, … , Ningzheng Dong, Qingyu Wu
Published September 2, 2021
Citation Information: J Clin Invest. 2021;131(20):e151053. https://doi.org/10.1172/JCI151053.
View: Text | PDF
Article has an altmetric score of 19

Atrial natriuretic peptide promotes uterine decidualization and a TRAIL-dependent mechanism in spiral artery remodeling

  • Text
  • PDF
Abstract

Atrial natriuretic peptide (ANP) is an important hormone in cardiovascular biology. It is activated by the protease corin. In pregnancy, ANP and corin promote uterine spiral artery remodeling, but the underlying mechanism remains unknown. Here we report an ANP function in uterine decidualization and TNF-related apoptosis-inducing ligand–dependent (TRAIL-dependent) death in spiral arterial smooth muscle cells (SMCs) and endothelial cells (ECs). In ANP- or corin-deficient mice, uterine decidualization markers and TRAIL expression were decreased, whereas in cultured human endometrial stromal cells (HESCs), ANP increased decidualization and TRAIL expression. In uterine spiral arteries from pregnant wild-type mice, SMC and EC loss occurred sequentially before trophoblast invasion. In culture, TRAIL from decidualized HESCs induced apoptosis in uterine SMCs, but not in ECs with low TRAIL receptor expression. Subsequently, cyclophilin B was identified from apoptotic SMCs that upregulated endothelial TRAIL receptor and caused apoptosis in ECs. These results indicate that ANP promotes decidualization and TRAIL expression in endometrial stromal cells, contributing to sequential events in remodeling of spiral arteries, including SMC death and cyclophilin B release, which in turn induces TRAIL receptor expression and apoptosis in ECs.

Authors

Wei Zhang, Shuo Li, Jinglei Lou, Hui Li, Meng Liu, Ningzheng Dong, Qingyu Wu

×

Breast cancer–derived GM-CSF regulates arginase 1 in myeloid cells to promote an immunosuppressive microenvironment
Xinming Su, … , Samuel Achilefu, Katherine N. Weilbaecher
Xinming Su, … , Samuel Achilefu, Katherine N. Weilbaecher
Published September 14, 2021
Citation Information: J Clin Invest. 2021;131(20):e145296. https://doi.org/10.1172/JCI145296.
View: Text | PDF
Article has an altmetric score of 10

Breast cancer–derived GM-CSF regulates arginase 1 in myeloid cells to promote an immunosuppressive microenvironment

  • Text
  • PDF
Abstract

Tumor-infiltrating myeloid cells contribute to the development of the immunosuppressive tumor microenvironment. Myeloid cell expression of arginase 1 (ARG1) promotes a protumor phenotype by inhibiting T cell function and depleting extracellular l-arginine, but the mechanism underlying this expression, especially in breast cancer, is poorly understood. In breast cancer clinical samples and in our mouse models, we identified tumor-derived GM-CSF as the primary regulator of myeloid cell ARG1 expression and local immune suppression through a gene-KO screen of breast tumor cell–produced factors. The induction of myeloid cell ARG1 required GM-CSF and a low pH environment. GM-CSF signaling through STAT3 and p38 MAPK and acid signaling through cAMP were required to activate myeloid cell ARG1 expression in a STAT6-independent manner. Importantly, breast tumor cell–derived GM-CSF promoted tumor progression by inhibiting host antitumor immunity, driving a significant accumulation of ARG1-expressing myeloid cells compared with lung and melanoma tumors with minimal GM-CSF expression. Blockade of tumoral GM-CSF enhanced the efficacy of tumor-specific adoptive T cell therapy and immune checkpoint blockade. Taken together, we show that breast tumor cell–derived GM-CSF contributes to the development of the immunosuppressive breast cancer microenvironment by regulating myeloid cell ARG1 expression and can be targeted to enhance breast cancer immunotherapy.

Authors

Xinming Su, Yalin Xu, Gregory C. Fox, Jingyu Xiang, Kristin A. Kwakwa, Jennifer L. Davis, Jad I. Belle, Wen-Chih Lee, Wing H. Wong, Francesca Fontana, Leonel F. Hernandez-Aya, Takayuki Kobayashi, Helen M. Tomasson, Junyi Su, Suzanne J. Bakewell, Sheila A. Stewart, Christopher Egbulefu, Partha Karmakar, Melisa A. Meyer, Deborah J. Veis, David G. DeNardo, Gregory M. Lanza, Samuel Achilefu, Katherine N. Weilbaecher

×

Skeleton-secreted PDGF-BB mediates arterial stiffening
Lakshmi Santhanam, … , Xu Cao, Mei Wan
Lakshmi Santhanam, … , Xu Cao, Mei Wan
Published August 26, 2021
Citation Information: J Clin Invest. 2021;131(20):e147116. https://doi.org/10.1172/JCI147116.
View: Text | PDF
Article has an altmetric score of 14

Skeleton-secreted PDGF-BB mediates arterial stiffening

  • Text
  • PDF
Abstract

Evidence links osteoporosis and cardiovascular disease but the cellular and molecular mechanisms are unclear. Here we identify skeleton-secreted platelet-derived growth factor–BB (PDGF-BB) as a key mediator of arterial stiffening in response to aging and metabolic stress. Aged mice and those fed high-fat diet (HFD), relative to young mice and those fed normal chow food diet, respectively, had higher serum PDGF-BB and developed bone loss and arterial stiffening. Bone/bone marrow preosteoclasts in aged mice and HFD mice secrete an excessive amount of PDGF-BB, contributing to the elevated PDGF-BB in blood circulation. Conditioned medium prepared from preosteoclasts stimulated proliferation and migration of the vascular smooth muscle cells. Conditional transgenic mice, in which PDGF-BB is overexpressed in preosteoclasts, had 3-fold higher serum PDGF-BB concentration and developed simultaneous bone loss and arterial stiffening spontaneously at a young age. Conversely, in conditional knockout mice, in which PDGF-BB is deleted selectively in preosteoclasts, HFD did not affect serum PDGF-BB concentration; as a result, HFD-induced bone loss and arterial stiffening were attenuated. These studies confirm that preosteoclasts are a main source of excessive PDGF-BB in blood circulation during aging and metabolic stress and establish the role of skeleton-derived PDGF-BB as an important mediator of vascular stiffening.

Authors

Lakshmi Santhanam, Guanqiao Liu, Sandeep Jandu, Weiping Su, Bulouere P. Wodu, William Savage, Alan Poe, Xiaonan Liu, Lacy M. Alexander, Xu Cao, Mei Wan

×

Sparcl1 promotes nonalcoholic steatohepatitis progression in mice through upregulation of CCL2
Bin Liu, … , Minghua Zheng, Yan Lu
Bin Liu, … , Minghua Zheng, Yan Lu
Published October 15, 2021
Citation Information: J Clin Invest. 2021;131(20):e144801. https://doi.org/10.1172/JCI144801.
View: Text | PDF
Article has an altmetric score of 6

Sparcl1 promotes nonalcoholic steatohepatitis progression in mice through upregulation of CCL2

  • Text
  • PDF
Abstract

Nonalcoholic fatty liver disease (NAFLD) represents a spectrum of chronic liver disease ranging from simple steatosis (NAFL) to nonalcoholic steatohepatitis (NASH). However, the molecular mechanisms of NASH progression remain incompletely understood. White adipose tissue (WAT) has emerged as an important endocrine organ and contributes not only to the initial stage of NAFLD, but also to its severity. In the current study, through transcriptomic analysis we identified increased expression of Sparcl1, a secreted glycoprotein, in the WAT from NASH mice. Plasma Sparcl1 levels were similarly elevated and positively correlated with hepatic pathological features in NASH patients. Functional studies showed that both chronic injection of recombinant Sparcl1 protein and overexpression of Sparcl1 exaggerated hepatic inflammation and liver injury in mice. In contrast, genetic ablation of Sparcl1, knockdown of Sparcl1 in WAT, and treatment with a Sparcl1-neutralizing antibody dramatically alleviated diet-induced NASH pathogenesis. Mechanistically, Sparcl1 promoted the expression of C-C motif chemokine ligand 2 (CCL2) in hepatocytes through binding to Toll-like receptor 4 (TLR4) and activation of the NF-κB/p65 signaling pathway. Genetically or pharmacologically blocking the CCL2/CCR2 pathway attenuated the hepatic inflammatory response evoked by Sparcl1. Thus, our results demonstrated an important role for Sparcl1 in NASH progression, suggesting a potential target for therapeutic intervention.

Authors

Bin Liu, Liping Xiang, Jing Ji, Wei Liu, Ying Chen, Mingfeng Xia, Yuejun Liu, Wenyue Liu, Peiwu Zhu, Yi Jin, Yu Han, Jieli Lu, Xiaoying Li, Minghua Zheng, Yan Lu

×

The key role of NLRP3 and STING in APOL1-associated podocytopathy
Junnan Wu, … , Andreas Linkermann, Katalin Susztak
Junnan Wu, … , Andreas Linkermann, Katalin Susztak
Published October 15, 2021
Citation Information: J Clin Invest. 2021;131(20):e136329. https://doi.org/10.1172/JCI136329.
View: Text | PDF
Article has an altmetric score of 23

The key role of NLRP3 and STING in APOL1-associated podocytopathy

  • Text
  • PDF
Abstract

Coding variants in apolipoprotein L1 (APOL1), termed G1 and G2, can explain most excess kidney disease risk in African Americans; however, the molecular pathways of APOL1-induced kidney dysfunction remain poorly understood. Here, we report that expression of G2 APOL1 in the podocytes of Nphs1rtTA/TRE-G2APOL1 (G2APOL1) mice leads to early activation of the cytosolic nucleotide sensor, stimulator of interferon genes (STING), and the NLR family pyrin domain–containing 3 (NLRP3) inflammasome. STING and NLRP3 expression was increased in podocytes from patients with high-risk APOL1 genotypes, and expression of APOL1 correlated with caspase-1 and gasdermin D (GSDMD) levels. To demonstrate the role of NLRP3 and STING in APOL1-associated kidney disease, we generated transgenic mice with the G2 APOL1 risk variant and genetic deletion of Nlrp3 (G2APOL1/Nlrp3 KO), Gsdmd (G2APOL1/Gsdmd KO), and STING (G2APOL1/STING KO). Knockout mice displayed marked reduction in albuminuria, azotemia, and kidney fibrosis compared with G2APOL1 mice. To evaluate the therapeutic potential of targeting NLRP3, GSDMD, and STING, we treated mice with MCC950, disulfiram, and C176, potent and selective inhibitors of NLRP3, GSDMD, and STING, respectively. G2APOL1 mice treated with MCC950, disulfiram, and C176 showed lower albuminuria and improved kidney function even when inhibitor treatment was initiated after the development of albuminuria.

Authors

Junnan Wu, Archana Raman, Nathan J. Coffey, Xin Sheng, Joseph Wahba, Matthew J. Seasock, Ziyuan Ma, Pazit Beckerman, Dorottya Laczkó, Matthew B. Palmer, Jeffrey B. Kopp, Jay J. Kuo, Steven S. Pullen, Carine M. Boustany-Kari, Andreas Linkermann, Katalin Susztak

×

Temporal manipulation of Cdkl5 reveals essential postdevelopmental functions and reversible CDKL5 deficiency disorder–related deficits
Barbara Terzic, … , Marc V. Fuccillo, Zhaolan Zhou
Barbara Terzic, … , Marc V. Fuccillo, Zhaolan Zhou
Published October 15, 2021
Citation Information: J Clin Invest. 2021;131(20):e143655. https://doi.org/10.1172/JCI143655.
View: Text | PDF
Article has an altmetric score of 53

Temporal manipulation of Cdkl5 reveals essential postdevelopmental functions and reversible CDKL5 deficiency disorder–related deficits

  • Text
  • PDF
Abstract

CDKL5 deficiency disorder (CDD) is an early onset, neurodevelopmental syndrome associated with pathogenic variants in the X-linked gene encoding cyclin-dependent kinase-like 5 (CDKL5). CDKL5 has been implicated in neuronal synapse maturation, yet its postdevelopmental necessity and the reversibility of CDD-associated impairments remain unknown. We temporally manipulated endogenous Cdkl5 expression in male mice and found that postdevelopmental loss of CDKL5 disrupts numerous behavioral domains, hippocampal circuit communication, and dendritic spine morphology, demonstrating an indispensable role for CDKL5 in the adult brain. Accordingly, restoration of Cdkl5 after the early stages of brain development using a conditional rescue mouse model ameliorated CDD-related behavioral impairments and aberrant NMDA receptor signaling. These findings highlight the requirement of CDKL5 beyond early development, underscore the potential for disease reversal in CDD, and suggest that a broad therapeutic time window exists for potential treatment of CDD-related deficits.

Authors

Barbara Terzic, M. Felicia Davatolhagh, Yugong Ho, Sheng Tang, Yu-Ting Liu, Zijie Xia, Yue Cui, Marc V. Fuccillo, Zhaolan Zhou

×

Combined presentation and immunogenicity analysis reveals a recurrent RAS.Q61K neoantigen in melanoma
Aviyah Peri, … , Nir Friedman, Yardena Samuels
Aviyah Peri, … , Nir Friedman, Yardena Samuels
Published October 15, 2021
Citation Information: J Clin Invest. 2021;131(20):e129466. https://doi.org/10.1172/JCI129466.
View: Text | PDF
Article has an altmetric score of 49

Combined presentation and immunogenicity analysis reveals a recurrent RAS.Q61K neoantigen in melanoma

  • Text
  • PDF
Abstract

Neoantigens are now recognized drivers of the antitumor immune response. Recurrent neoantigens, shared among groups of patients, have thus become increasingly coveted therapeutic targets. Here, we report on the data-driven identification of a robustly presented, immunogenic neoantigen that is derived from the combination of HLA-A*01:01 and RAS.Q61K. Analysis of large patient cohorts indicated that this combination applies to 3% of patients with melanoma. Using HLA peptidomics, we were able to demonstrate robust endogenous presentation of the neoantigen in 10 tumor samples. We detected specific reactivity to the mutated peptide within tumor-infiltrating lymphocytes (TILs) from 2 unrelated patients, thus confirming its natural immunogenicity. We further investigated the neoantigen-specific clones and their T cell receptors (TCRs) via a combination of TCR sequencing, TCR overexpression, functional assays, and single-cell transcriptomics. Our analysis revealed a diverse repertoire of neoantigen-specific clones with both intra- and interpatient TCR similarities. Moreover, 1 dominant clone proved to cross-react with the highly prevalent RAS.Q61R variant. Transcriptome analysis revealed a high association of TCR clones with specific T cell phenotypes in response to cognate melanoma, with neoantigen-specific cells showing an activated and dysfunctional phenotype. Identification of recurrent neoantigens and their reactive TCRs can promote “off-the-shelf” precision immunotherapies, alleviating limitations of personalized treatments.

Authors

Aviyah Peri, Erez Greenstein, Michal Alon, Joy A. Pai, Tamir Dingjan, Shlomit Reich-Zeliger, Eilon Barnea, Chaya Barbolin, Ronen Levy, Claudia Arnedo-Pac, Shelly Kalaora, Bareket Dassa, Ester Feldmesser, Ping Shang, Polina Greenberg, Yishai Levin, Gil Benedek, Mitchell P. Levesque, David J. Adams, Michal Lotem, James S. Wilmott, Richard A. Scolyer, Göran B. Jönsson, Arie Admon, Steven A. Rosenberg, Cyrille J. Cohen, Masha Y. Niv, Nuria Lopez-Bigas, Ansuman T. Satpathy, Nir Friedman, Yardena Samuels

×

Stromal cell–derived DEL-1 inhibits Tfh cell activation and inflammatory arthritis
Hui Wang, … , Triantafyllos Chavakis, George Hajishengallis
Hui Wang, … , Triantafyllos Chavakis, George Hajishengallis
Published August 17, 2021
Citation Information: J Clin Invest. 2021;131(19):e150578. https://doi.org/10.1172/JCI150578.
View: Text | PDF
Article has an altmetric score of 284

Stromal cell–derived DEL-1 inhibits Tfh cell activation and inflammatory arthritis

  • Text
  • PDF
Abstract

The secreted protein developmental endothelial locus 1 (DEL-1) regulates inflammatory cell recruitment and protects against inflammatory pathologies in animal models. Here, we investigated DEL-1 in inflammatory arthritis using collagen-induced arthritis (CIA) and collagen Ab–induced arthritis (CAIA) models. In both models, mice with endothelium-specific overexpression of DEL-1 were protected from arthritis relative to WT controls, whereas arthritis was exacerbated in DEL-1–deficient mice. Compared with WT controls, mice with collagen VI promoter–driven overexpression of DEL-1 in mesenchymal cells were protected against CIA but not CAIA, suggesting a role for DEL-1 in the induction of the arthritogenic Ab response. Indeed, DEL-1 was expressed in perivascular stromal cells of the lymph nodes and inhibited Tfh and germinal center B cell responses. Mechanistically, DEL-1 inhibited DC-dependent induction of Tfh cells by targeting the LFA-1 integrin on T cells. Overall, DEL-1 restrained arthritis through a dual mechanism, one acting locally in the joints and associated with the anti-recruitment function of endothelial cell–derived DEL-1; the other mechanism acting systemically in the lymph nodes and associated with the ability of stromal cell–derived DEL-1 to restrain Tfh responses. DEL-1 may therefore be a promising therapeutic for the treatment of inflammatory arthritis.

Authors

Hui Wang, Xiaofei Li, Tetsuhiro Kajikawa, Jieun Shin, Jong-Hyung Lim, Ioannis Kourtzelis, Kosuke Nagai, Jonathan M. Korostoff, Sylvia Grossklaus, Ronald Naumann, Triantafyllos Chavakis, George Hajishengallis

×

Functional Th1-oriented T follicular helper cells that infiltrate human breast cancer promote effective adaptive immunity
Grégory Noël, … , Denis Larsimont, Karen Willard-Gallo
Grégory Noël, … , Denis Larsimont, Karen Willard-Gallo
Published August 19, 2021
Citation Information: J Clin Invest. 2021;131(19):e139905. https://doi.org/10.1172/JCI139905.
View: Text | PDF
Article has an altmetric score of 14

Functional Th1-oriented T follicular helper cells that infiltrate human breast cancer promote effective adaptive immunity

  • Text
  • PDF
Abstract

We previously demonstrated that tumor-infiltrating lymphocytes (TIL) in human breast cancer sometimes form organized tertiary lymphoid structures (TLS) characterized by CXCL13-producing T follicular helper (Tfh) cells. The present study found that CD4+ Tfh TIL, CD8+ TIL, and TIL-B, colocalizing in TLS, all express the CXCL13 receptor CXCR5. An ex vivo functional assay determined that only activated, functional Th1-oriented Tfh TIL (PD-1hiICOSint phenotype) provide help for immunoglobulin and IFN-γ production. A functional Tfh TIL presence signals an active TLS, characterized by humoral (immunoglobulins, Ki-67+ TIL-B in active germinal centers) and cytotoxic (GZMB+CD8+ and GZMB+CD68+ TIL plus Th1 gene expression) immune responses. Analysis of active versus inactive TLS in untreated patients revealed that the former are associated with positive clinical outcomes. TLS also contain functional T follicular regulatory (Tfr) TIL, which are characterized by a CD25+CXCR5+GARP+FOXP3+ phenotype and a demethylated FOXP3 gene. Functional Tfr inhibited functional Tfh activities via a glycoprotein A repetitions predominant (GARP)-associated TGF-β–dependent mechanism. The activity of tumor-associated TLS was dictated by the relative balance between functional Tfh TIL and functional Tfr TIL. These data provide mechanistic insight into TLS processes orchestrated by functional Th1-oriented Tfh TIL, including TIL-B and CD8+ TIL activation and immunological memory generation. Tfh TIL, regulated by functional Tfr TIL, are an expected key target of PD-1/PD-L1 blockade.

Authors

Grégory Noël, Mireille Langouo Fontsa, Soizic Garaud, Pushpamali De Silva, Alexandre de Wind, Gert G. Van den Eynden, Roberto Salgado, Anaïs Boisson, Hanne Locy, Noémie Thomas, Cinzia Solinas, Edoardo Migliori, Céline Naveaux, Hugues Duvillier, Sophie Lucas, Ligia Craciun, Kris Thielemans, Denis Larsimont, Karen Willard-Gallo

×
  • ← Previous
  • 1
  • 2
  • …
  • 120
  • 121
  • 122
  • …
  • 2547
  • 2548
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Blogged by 1
Posted by 12 X users
23 readers on Mendeley
See more details
Picked up by 36 news outlets
Blogged by 1
Posted by 15 X users
On 2 Facebook pages
17 readers on Mendeley
See more details
Blogged by 2
Posted by 20 X users
59 readers on Mendeley
See more details
Picked up by 4 news outlets
Blogged by 1
Posted by 21 X users
63 readers on Mendeley
See more details
Picked up by 4 news outlets
Posted by 37 X users
On 1 Facebook pages
Referenced in 1 Wikipedia pages
70 readers on Mendeley
See more details
Posted by 2 X users
29 readers on Mendeley
See more details
Posted by 9 X users
On 1 Facebook pages
37 readers on Mendeley
See more details
Blogged by 1
Posted by 11 X users
103 readers on Mendeley
See more details
Picked up by 2 news outlets
Posted by 3 X users
18 readers on Mendeley
See more details
Posted by 15 X users
65 readers on Mendeley
See more details