The urgent need for better cancer treatments has stimulated interest in employing small-animal models to evaluate potential drug therapies. Robust mouse models of many human cancers have been generated using sophisticated technologies for engineering germ-line mutations. As we enter into an age of targeted therapeutics, these strains provide novel platforms for validating new anticancer drugs, assessing therapeutic index, identifying surrogate markers of tumor progression, and defining epigenetic and environmental influences on tumorigenesis.
David H. Gutmann, Kim Hunter-Schaedle, Kevin M. Shannon
Sydney Ringer would be overwhelmed today by the implications of his simple experiment performed over 120 years ago showing that the heart would not beat in the absence of Ca2+. Fascination with the role of Ca2+ has proliferated into all aspects of our understanding of normal cardiac function and the progression of heart disease, including induction of cardiac hypertrophy, heart failure, and sudden death. This review examines the role of Ca2+ and the L-type voltage-dependent Ca2+ channels in cardiac disease.
Ilona Bodi, Gabor Mikala, Sheryl E. Koch, Shahab A. Akhter, Arnold Schwartz
Over the last decade, an abundance of evidence has emerged demonstrating a close link between metabolism and immunity. It is now clear that obesity is associated with a state of chronic low-level inflammation. In this article, we discuss the molecular and cellular underpinnings of obesity-induced inflammation and the signaling pathways at the intersection of metabolism and inflammation that contribute to diabetes. We also consider mechanisms through which the inflammatory response may be initiated and discuss the reasons for the inflammatory response in obesity. We put forth for consideration some hypotheses regarding important unanswered questions in the field and suggest a model for the integration of inflammatory and metabolic pathways in metabolic disease.
Kathryn E. Wellen, Gökhan S. Hotamisligil
Type 1 diabetes is the result of an autoimmune attack against the insulin-producing β cells of the endocrine pancreas. Current treatment for patients with type 1 diabetes typically involves a rigorous and invasive regimen of testing blood glucose levels many times a day along with subcutaneous injections of recombinant DNA–derived insulin. Islet transplantation, even with its substantially improved outcome in recent years, is still not indicated for pediatric patients. However, in light of the fact that some regenerative capabilities of the endocrine pancreas have been documented and recent research has shown that human ES cell lines can be derived in vitro, this review discusses whether it is practical or even possible to combine these lines of research to more effectively treat young diabetic patients.
Massimo Trucco
T and B lymphocytes, as well as endothelial cells, express distinctive profiles of G protein–coupled receptors for sphingosine 1–phosphate, which is a major regulator of T cell development, B and T cell recirculation, tissue homing patterns, and chemotactic responses to chemokines. The capacity of drugs that act on type 1 sphingosine 1–phosphate receptors to suppress organ graft rejection in humans and autoimmunity in animal models without apparent impairment of host defenses against infections suggests that this system is a promising target for new forms of immunotherapy.
Edward J. Goetzl, Hugh Rosen
The creation of human embryonic stem cells through the destruction of a human embryo pits the value of a potential therapeutic tool against that of an early human life. This contest of values has resulted in a polarized debate that neglects areas of common interest and perspective. We suggest that a common ground for pursuing research on human embryonic stem cells can be found by reconsidering the death of the human embryo and by applying to this research the ethical norms of essential organ donation.
Donald W. Landry, Howard A. Zucker
Cell-to-cell viral transmission facilitates the propagation of HIV-1 and human T cell leukemia virus type 1. Mechanisms of cell-to-cell transmission by retroviruses were not well understood until the recent description of virological synapses (VSs). VSs function as specialized sites of immune cell-to-cell contact that direct virus infection. Deciphering the molecular mechanisms of VS formation provides a fascinating insight into how pathogens subvert immune cell communication programs and achieve viral spread.
Vincent Piguet, Quentin Sattentau
Among the most cost-effective strategies for preventing viral infections, vaccines have proven effective primarily against viruses causing acute, self-limited infections. For these it has been sufficient for the vaccine to mimic the natural virus. However, viruses causing chronic infection do not elicit an immune response sufficient to clear the infection and, as a result, vaccines for these viruses must elicit more effective responses — quantitative and qualitative — than does the natural virus. Here we examine the immunologic and virologic basis for vaccines against three such viruses, HIV, hepatitis C virus, and human papillomavirus, and review progress in clinical trials to date. We also explore novel strategies for increasing the immunogenicity and efficacy of vaccines.
Jay A. Berzofsky, Jeffrey D. Ahlers, John Janik, John Morris, SangKon Oh, Masaki Terabe, Igor M. Belyakov
Obesity and its associated comorbidities are among the most prevalent and challenging conditions confronting the medical profession in the 21st century. A major metabolic consequence of obesity is insulin resistance, which is strongly associated with the deposition of triglycerides in the liver. Hepatic steatosis can either be a benign, noninflammatory condition that appears to have no adverse sequelae or can be associated with steatohepatitis: a condition that can result in end-stage liver disease, accounting for up to 14% of liver transplants in the US. Here we highlight recent advances in our understanding of the molecular events contributing to hepatic steatosis and nonalcoholic steatohepatitis.
Jeffrey D. Browning, Jay D. Horton
In recent years, great strides in understanding and regulating the immune system have led to new hope for harnessing its exquisite specificity to destroy cancer cells without affecting normal tissues. This review examines the fundamental immunologic advances and the novel vaccine strategies arising from these advances, as well as the early clinical trials studying new approaches to treat or prevent cancer.
Jay A. Berzofsky, Masaki Terabe, SangKon Oh, Igor M. Belyakov, Jeffrey D. Ahlers, John E. Janik, John C. Morris
No posts were found with this tag.