Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Inflammation

  • 297 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 27
  • 28
  • 29
  • 30
  • Next →
Leukotriene B4 amplifies NF-κB activation in mouse macrophages by reducing SOCS1 inhibition of MyD88 expression
Carlos H. Serezani, … , Sonia Jancar, Marc Peters-Golden
Carlos H. Serezani, … , Sonia Jancar, Marc Peters-Golden
Published January 4, 2011
Citation Information: J Clin Invest. 2011. https://doi.org/10.1172/JCI43302.
View: Text | PDF

Leukotriene B4 amplifies NF-κB activation in mouse macrophages by reducing SOCS1 inhibition of MyD88 expression

  • Text
  • PDF
Abstract

Activation of NF-κB and 5-lipoxygenase–mediated (5-LO–mediated) biosynthesis of the lipid mediator leukotriene B4 (LTB4) are pivotal components of host defense and inflammatory responses. However, the role of LTB4 in mediating innate immune responses elicited by specific TLR ligands and cytokines is unknown. Here we have shown that responses dependent on MyD88 (an adaptor protein that mediates signaling through all of the known TLRs, except TLR3, as well as IL-1β and IL-18) are reduced in mice lacking either 5-LO or the LTB4 receptor BTL1, and that macrophages from these mice are impaired in MyD88-dependent activation of NF-κB. This macrophage defect was associated with lower basal and inducible expression of MyD88 and reflected impaired activation of STAT1 and overexpression of the STAT1 inhibitor SOCS1. Expression of MyD88 and responsiveness to the TLR4 ligand LPS were decreased by Stat1 siRNA silencing in WT macrophages and restored by Socs1 siRNA in 5-LO–deficient macrophages. These results uncover a pivotal role in macrophages for the GPCR BLT1 in regulating activation of NF-κB through Stat1-dependent expression of MyD88.

Authors

Carlos H. Serezani, Casey Lewis, Sonia Jancar, Marc Peters-Golden

×

Bcl3 prevents acute inflammatory lung injury in mice by restraining emergency granulopoiesis
Daniel Kreisel, … , Ruaidhri J. Carmody, Andrew E. Gelman
Daniel Kreisel, … , Ruaidhri J. Carmody, Andrew E. Gelman
Published December 13, 2010
Citation Information: J Clin Invest. 2010. https://doi.org/10.1172/JCI42596.
View: Text | PDF
Article has an altmetric score of 1

Bcl3 prevents acute inflammatory lung injury in mice by restraining emergency granulopoiesis

  • Text
  • PDF
Abstract

Granulocytes are pivotal regulators of tissue injury. However, the transcriptional mechanisms that regulate granulopoiesis under inflammatory conditions are poorly understood. Here we show that the transcriptional coregulator B cell leukemia/lymphoma 3 (Bcl3) limits granulopoiesis under emergency (i.e., inflammatory) conditions, but not homeostatic conditions. Treatment of mouse myeloid progenitors with G-CSF — serum concentrations of which rise under inflammatory conditions — rapidly increased Bcl3 transcript accumulation in a STAT3-dependent manner. Bcl3-deficient myeloid progenitors demonstrated an enhanced capacity to proliferate and differentiate into granulocytes following G-CSF stimulation, whereas the accumulation of Bcl3 protein attenuated granulopoiesis in an NF-κB p50–dependent manner. In a clinically relevant model of transplant-mediated lung ischemia reperfusion injury, expression of Bcl3 in recipients inhibited emergency granulopoiesis and limited acute graft damage. These data demonstrate a critical role for Bcl3 in regulating emergency granulopoiesis and suggest that targeting the differentiation of myeloid progenitors may be a therapeutic strategy for preventing inflammatory lung injury.

Authors

Daniel Kreisel, Seiichiro Sugimoto, Jeremy Tietjens, Jihong Zhu, Sumiharu Yamamoto, Alexander S. Krupnick, Ruaidhri J. Carmody, Andrew E. Gelman

×

Mammalian target of rapamycin activation underlies HSC defects in autoimmune disease and inflammation in mice
Chong Chen, … , Yang Liu, Pan Zheng
Chong Chen, … , Yang Liu, Pan Zheng
Published December 1, 2010
Citation Information: J Clin Invest. 2010;120(12):4583-4583. https://doi.org/10.1172/JCI43873C1.
View: Text | PDF | Amended Article

Mammalian target of rapamycin activation underlies HSC defects in autoimmune disease and inflammation in mice

  • Text
  • PDF
Abstract

Authors

Chong Chen, Yu Liu, Yang Liu, Pan Zheng

×

Genetic and therapeutic targeting of properdin in mice prevents complement-mediated tissue injury
Yuko Kimura, … , Takashi Miwa, Wen-Chao Song
Yuko Kimura, … , Takashi Miwa, Wen-Chao Song
Published September 1, 2010
Citation Information: J Clin Invest. 2010. https://doi.org/10.1172/JCI41782.
View: Text | PDF
Article has an altmetric score of 5

Genetic and therapeutic targeting of properdin in mice prevents complement-mediated tissue injury

  • Text
  • PDF
Abstract

The alternative pathway (AP) of complement activation is constitutively active and must be regulated by host proteins to prevent autologous tissue injury. Dysfunction of AP regulatory proteins has been linked to several human inflammatory disorders. Properdin is a positive regulator of AP complement activation that has been shown to extend the half-life of cell surface–bound C3 convertase C3bBb; it may also initiate AP complement activation. Here, we demonstrate a critical role for properdin in autologous tissue injury mediated by AP complement activation. We identified myeloid lineage cells as the principal source of plasma properdin by generating mice with global and tissue-specific knockout of Cfp (which encodes properdin) and by generating BM chimeric mice. Properdin deficiency rescued mice from AP complement–mediated embryonic lethality caused by deficiency of the membrane complement regulator Crry and markedly reduced disease severity in the K/BxN model of arthritis. Ab neutralization of properdin in WT mice similarly ameliorated arthritis development, whereas reconstitution of properdin-null mice with exogenous properdin restored arthritis sensitivity. These data implicate systemic properdin as a key contributor to AP complement–mediated injury and support its therapeutic targeting in complement-dependent human diseases.

Authors

Yuko Kimura, Lin Zhou, Takashi Miwa, Wen-Chao Song

×

Hepcidin mediates transcriptional changes that modulate acute cytokine-induced inflammatory responses in mice
Ivana De Domenico, … , Diane M. Ward, Jerry Kaplan
Ivana De Domenico, … , Diane M. Ward, Jerry Kaplan
Published June 7, 2010
Citation Information: J Clin Invest. 2010. https://doi.org/10.1172/JCI42011.
View: Text | PDF | Corrigendum
Article has an altmetric score of 9

Hepcidin mediates transcriptional changes that modulate acute cytokine-induced inflammatory responses in mice

  • Text
  • PDF
Abstract

Hepcidin is a peptide hormone that regulates iron homeostasis and acts as an antimicrobial peptide. It is expressed and secreted by a variety of cell types in response to iron loading and inflammation. Hepcidin mediates iron homeostasis by binding to the iron exporter ferroportin, inducing its internalization and degradation via activation of the protein kinase Jak2 and the subsequent phosphorylation of ferroportin. Here we have shown that hepcidin-activated Jak2 also phosphorylates the transcription factor Stat3, resulting in a transcriptional response. Hepcidin treatment of ferroportin-expressing mouse macrophages showed changes in mRNA expression levels of a wide variety of genes. The changes in transcript levels for half of these genes were a direct effect of hepcidin, as shown by cycloheximide insensitivity, and dependent on the presence of Stat3. Hepcidin-mediated transcriptional changes modulated LPS-induced transcription in both cultured macrophages and in vivo mouse models, as demonstrated by suppression of IL-6 and TNF-α transcript and secreted protein. Hepcidin-mediated transcription in mice also suppressed toxicity and morbidity due to single doses of LPS, poly(I:C), and turpentine, which is used to model chronic inflammatory disease. Most notably, we demonstrated that hepcidin pretreatment protected mice from a lethal dose of LPS and that hepcidin-knockout mice could be rescued from LPS toxicity by injection of hepcidin. The results of our study suggest a new function for hepcidin in modulating acute inflammatory responses.

Authors

Ivana De Domenico, Tian Y. Zhang, Curry L. Koening, Ryan W. Branch, Nyall London, Eric Lo, Raymond A. Daynes, James P. Kushner, Dean Li, Diane M. Ward, Jerry Kaplan

×

CCR2 mediates hematopoietic stem and progenitor cell trafficking to sites of inflammation in mice
Yue Si, … , Kelsey Croft, Israel F. Charo
Yue Si, … , Kelsey Croft, Israel F. Charo
Published March 15, 2010
Citation Information: J Clin Invest. 2010. https://doi.org/10.1172/JCI40310.
View: Text | PDF
Article has an altmetric score of 5

CCR2 mediates hematopoietic stem and progenitor cell trafficking to sites of inflammation in mice

  • Text
  • PDF
Abstract

HSCs are BM-derived, self-renewing multipotent cells that develop into circulating blood cells. They have been implicated in the repair of inflamed parenchymal tissue, but the signals that regulate their trafficking to sites of inflammation are unknown. As monocytes are recruited to sites of inflammation via chemoattractants that activate CCR2 on their surface, we investigated whether HSCs are also recruited to sites of inflammation through CCR2. Initial analysis indicated that in mice, CCR2 was expressed on subsets of HSCs and hematopoietic progenitor cells (HPCs) and that freshly isolated primitive hematopoietic cells (Lin–c-Kit+ cells) responded to CCR2 ligands in vitro. In vivo analysis indicated that after instillation of thioglycollate to cause aseptic inflammation and after administration of acetaminophen to induce liver damage, endogenous HSCs/HPCs were actively recruited to the peritoneum and liver, respectively, in WT but not Ccr2–/– mice. HSCs/HPCs recovered from the peritoneum successfully engrafted into the BM of irradiated primary and secondary recipients, confirming their self renewal and multipotency. Importantly, administration of exogenous WT, but not Ccr2–/–, HSCs/HPCs accelerated resolution of acetaminophen-induced liver damage and triggered the expression of genes characteristic of the macrophage M2 or repair phenotype. These findings reveal what we believe to be a novel role for CCR2 in the homing of HSCs/HPCs to sites of inflammation and suggest new functions for chemokines in promoting tissue repair and regeneration.

Authors

Yue Si, Chia-Lin Tsou, Kelsey Croft, Israel F. Charo

×

The Down syndrome critical region gene 1 short variant promoters direct vascular bed–specific gene expression during inflammation in mice
Takashi Minami, … , William C. Aird, Tatsuhiko Kodama
Takashi Minami, … , William C. Aird, Tatsuhiko Kodama
Published July 13, 2009
Citation Information: J Clin Invest. 2009. https://doi.org/10.1172/JCI35738.
View: Text | PDF

The Down syndrome critical region gene 1 short variant promoters direct vascular bed–specific gene expression during inflammation in mice

  • Text
  • PDF
Abstract

Down syndrome critical region gene 1 (DSCR-1) short variant (DSCR-1s) is an inhibitor of calcineurin/NFAT signaling encoded by exons 4–7 of DSCR1. We previously reported that VEGF induces DSCR-1s expression in endothelial cells, which in turn negatively feeds back to attenuate endothelial cell activation. Here, in order to characterize the role of the promoter that drives DSCR-1s expression in mediating inducible expression in vivo and to determine the functional relevance of DSCR-1s in inflammation, we targeted a DNA construct containing 1.7 kb of the human DSCR1s promoter coupled to the lacZ reporter to the hypoxanthine guanine phosphoribosyl transferase (Hprt) locus of mice. We determined that lacZ was uniformly expressed in the endothelium of transgenic embryos but was markedly downregulated postnatally. Systemic administration of VEGF or LPS in adult mice resulted in cyclosporine A–sensitive reactivation of the DSCR1s promoter and endogenous gene expression in a subset of organs, including the heart and brain. The DSCR1s promoter was similarly induced in the endothelium of tumor xenografts. In a mouse model of endotoxemia, DSCR-1s–deficient mice demonstrated increased sepsis mortality, whereas adenovirus-mediated DSCR-1s overexpression protected against LPS-induced lethality. Collectively, these data suggest that the DSCR1s promoter directs vascular bed–specific expression in activated endothelium and that DSCR-1s serves to dampen the host response to infection.

Authors

Takashi Minami, Kiichiro Yano, Mai Miura, Mika Kobayashi, Jun-ichi Suehiro, Patrick C. Reid, Takao Hamakubo, Sandra Ryeom, William C. Aird, Tatsuhiko Kodama

×

PMNs facilitate translocation of platelets across human and mouse epithelium and together alter fluid homeostasis via epithelial cell–expressed ecto-NTPDases
Thomas Weissmüller, … , Glenn T. Furuta, Sean P. Colgan
Thomas Weissmüller, … , Glenn T. Furuta, Sean P. Colgan
Published October 16, 2008
Citation Information: J Clin Invest. 2008. https://doi.org/10.1172/JCI35874.
View: Text | PDF

PMNs facilitate translocation of platelets across human and mouse epithelium and together alter fluid homeostasis via epithelial cell–expressed ecto-NTPDases

  • Text
  • PDF
Abstract

Mucosal diseases are often characterized by an inflammatory infiltrate that includes polymorphonuclear leukocytes (PMNs), monocytes, lymphocytes, and platelets. A number of studies have suggested that the interaction of platelets with leukocytes has an essential proinflammatory role. Here, we examined whether platelets migrate across mucosal epithelium, as PMNs are known to do, and whether platelets influence epithelial cell function. Initial studies revealed that human platelets did not efficiently transmigrate across human epithelial cell monolayers. However, in the presence of human PMNs, platelet movement across the epithelium was proportional to the extent of PMN transmigration, and strategies that blocked PMN transmigration diminished platelet movement. Furthermore, platelet-PMN comigration was observed in intestinal tissue derived from human patients with inflammatory bowel disease (IBD). The translocated platelets were found to release large quantities of ATP, which was metabolized to adenosine via a 2-step enzymatic reaction mediated by ecto-nucleotidases, including CD73 and ecto–nucleoside triphosphate diphosphohydrolases (ecto-NTPDases), expressed on the apical membrane of the intestinal epithelial cells. In vitro studies and a mouse model of intestinal inflammation were employed to define a mechanism involving adenosine-mediated induction of electrogenic chloride secretion, with concomitant water movement into the intestinal lumen. These studies demonstrate that ecto-NTPDases are expressed on the apical membrane of epithelial cells and are involved in what we believe to be a previously unappreciated function for platelets in the inflamed intestine, which might promote bacterial clearance under inflammatory conditions.

Authors

Thomas Weissmüller, Eric L. Campbell, Peter Rosenberger, Melanie Scully, Paul L. Beck, Glenn T. Furuta, Sean P. Colgan

×

Inflammatory macrophage migration requires MMP-9 activation by plasminogen in mice
Yanqing Gong, … , Aleksey Shchurin, Jane Hoover-Plow
Yanqing Gong, … , Aleksey Shchurin, Jane Hoover-Plow
Published August 1, 2008
Citation Information: J Clin Invest. 2008. https://doi.org/10.1172/JCI32750.
View: Text | PDF
Article has an altmetric score of 4

Inflammatory macrophage migration requires MMP-9 activation by plasminogen in mice

  • Text
  • PDF
Abstract

Inflammation plays a critical role in the development of cardiovascular diseases. Infiltration of leukocytes to sites of injury requires their exit from the blood and migration across basement membrane; this process has been postulated to require remodeling of the ECM. Plasminogen (Plg) is a protease that binds to the ECM and, upon conversion to plasmin, degrades multiple ECM proteins. In addition, plasmin directly activates MMPs. Here, we used Plg–/– mice to investigate the role of Plg in inflammatory leukocyte migration. After induction of peritonitis by thioglycollate injection, we found that Plg–/– mice displayed diminished macrophage trans-ECM migration and decreased MMP-9 activation. Furthermore, injection of the active form of MMP-9 in Plg–/– mice rescued macrophage migration in this model. We used periaortic application of CaCl2 to induce abdominal aortic aneurysm (AAA) and found that Plg–/– mice displayed reduced macrophage infiltration and were protected from aneurysm formation. Administration of active MMP-9 to Plg–/– mice promoted macrophage infiltration and the development of AAA. These data suggest that Plg regulates macrophage migration in inflammation via activation of MMP-9, which, in turn, regulates the ability of the cells to migrate across ECM. Thus, targeting the Plg/MMP-9 pathway may be an attractive approach to regulate inflammatory responses and AAA development.

Authors

Yanqing Gong, Erika Hart, Aleksey Shchurin, Jane Hoover-Plow

×

Proteinase 3 and neutrophil elastase enhance inflammation in mice by inactivating antiinflammatory progranulin
Kai Kessenbrock, … , Reinhard Fässler, Dieter E. Jenne
Kai Kessenbrock, … , Reinhard Fässler, Dieter E. Jenne
Published June 20, 2008
Citation Information: J Clin Invest. 2008. https://doi.org/10.1172/JCI34694.
View: Text | PDF
Article has an altmetric score of 8

Proteinase 3 and neutrophil elastase enhance inflammation in mice by inactivating antiinflammatory progranulin

  • Text
  • PDF
Abstract

Neutrophil granulocytes form the body’s first line of antibacterial defense, but they also contribute to tissue injury and noninfectious, chronic inflammation. Proteinase 3 (PR3) and neutrophil elastase (NE) are 2 abundant neutrophil serine proteases implicated in antimicrobial defense with overlapping and potentially redundant substrate specificity. Here, we unraveled a cooperative role for PR3 and NE in neutrophil activation and noninfectious inflammation in vivo, which we believe to be novel. Mice lacking both PR3 and NE demonstrated strongly diminished immune complex–mediated (IC-mediated) neutrophil infiltration in vivo as well as reduced activation of isolated neutrophils by ICs in vitro. In contrast, in mice lacking just NE, neutrophil recruitment to ICs was only marginally impaired. The defects in mice lacking both PR3 and NE were directly linked to the accumulation of antiinflammatory progranulin (PGRN). Both PR3 and NE cleaved PGRN in vitro and during neutrophil activation and inflammation in vivo. Local administration of recombinant PGRN potently inhibited neutrophilic inflammation in vivo, demonstrating that PGRN represents a crucial inflammation-suppressing mediator. We conclude that PR3 and NE enhance neutrophil-dependent inflammation by eliminating the local antiinflammatory activity of PGRN. Our results support the use of serine protease inhibitors as antiinflammatory agents.

Authors

Kai Kessenbrock, Leopold Fröhlich, Michael Sixt, Tim Lämmermann, Heiko Pfister, Andrew Bateman, Azzaq Belaaouaj, Johannes Ring, Markus Ollert, Reinhard Fässler, Dieter E. Jenne

×
  • ← Previous
  • 1
  • 2
  • …
  • 27
  • 28
  • 29
  • 30
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 3 patents
Highlighted by 2 platforms
43 readers on Mendeley
See more details
Blogged by 1
Posted by 1 X users
194 readers on Mendeley
1 readers on CiteULike
See more details
Referenced in 4 patents
Referenced in 1 Wikipedia pages
112 readers on Mendeley
See more details
Referenced in 4 patents
Highlighted by 1 platforms
179 readers on Mendeley
See more details
Highlighted by 1 platforms
60 readers on Mendeley
1 readers on CiteULike
See more details
Posted by 1 X users
Referenced in 1 patents
Highlighted by 1 platforms
157 readers on Mendeley
See more details