Patients with systemic lupus erythematosus (SLE) are photosensitive, developing skin inflammation with even ambient ultraviolet radiation (UVR), and this cutaneous photosensitivity can be associated with UVR-induced flares of systemic disease, which can involve increased autoantibodies and further end organ injury. Mechanistic insight into the link between the skin responses and autoimmunity is limited. Signals from skin are transmitted directly to the immune system via lymphatic vessels, and here we show evidence for potentiation of UVR-induced lymphatic flow dysfunction in SLE patients and murine models. Improving lymphatic flow by manual lymphatic drainage (MLD) or with a transgenic model with increased lymphatic vessels reduces both cutaneous inflammation and lymph node B and T cell responses, and long term MLD reduces splenomegaly and titers of a number of autoantibodies. Mechanistically, improved flow restrains B cell responses in part by stimulating a lymph node fibroblastic reticular cell-monocyte axis. Our results point to lymphatic modulation of lymph node stromal function as a link between photosensitive skin responses and autoimmunity and as a therapeutic target in lupus, provide insight into mechanisms by which the skin state regulates draining lymph node function, and suggest the possibility of MLD as an accessible and cost-effective adjunct to add to ongoing medical therapies for lupus and related diseases.
Mir J. Howlader, William G. Ambler, Madhavi Latha S. Chalasani, Aahna Rathod, Ethan S. Seltzer, Ji Hyun Sim, Jinyeon Shin, Noa Schwartz, William D. Shipman III, Dragos C. Dasoveanu, Camila B. Carballo, Ecem Sevim, Salma Siddique, Yurii Chinenov, Scott A. Rodeo, Doruk Erkan, Raghu P. Kataru, Babak J. Mehrara, Theresa T. Lu
BACKGROUND. Microglia-mediated brain immune changes play a role in the pathogenesis of Parkinson’s disease (PD) but imaging microglia in living people with PD has relied on positron emission tomography (PET) ligands that lack specificity in labeling immune cells in the nervous system. We aimed to develop imaging of colony stimulating factor 1 receptor (CSF1R) as a microglial-sensitive marker of innate immunity. METHODS. Immunohistochemistry using a CSF1R antibody evaluated colocalization with Iba-1 in PD (n = 4) and control (n = 4) human brain samples. Autoradiography using a CSF1R tritiated ligand in PD (n = 5) and controls (n = 4) human brain samples was performed to obtain Bmax. PET imaging using a CSF1R radioligand was performed in 10 controls and 12 people with PD and VT was compared between groups and correlated with disease severity. RESULTS. Immunohistochemistry of CSF1R in human brain shows colocalization with Iba-1 and is significantly increased in PD compared to controls. Autoradiography revealed significantly increased CSF1R ligand binding in the inferior parietal cortex of PD patients. [11C]CPPC PET showed higher binding in people with moderate PD compared to controls and correlated with more severe motor disability and poorer verbal fluency. CONCLUSION. This study underscores the significance of CSF1R imaging as a promising biomarker for brain immune function in Parkinson's disease, which may be associated with cognitive and motor disease severity FUNDING. PET imaging: the Michael J. Fox Foundation and the RMS Family Foundation. Radiotracer development: NIH (R01AG066464 and P41 EB024495). Postmortem brain tissues: NIH P30 AG066507 and BIOCARD study NIH U19 AG033655.
Kelly A. Mills, Yong Du, Jennifer M. Coughlin, Catherine A. Foss, Andrew G. Horti, Katelyn R. Jenkins, Yana Skorobogatova, Ergi Spiro, Chelsie S. Motley, Robert F. Dannals, Wojciech G. Lesniak, Jae-Jin Song, Yu Ree Choi, Javier Redding-Ochoa, Juan C. Troncoso, Valina L. Dawson, Tae-In Kam, Martin G. Pomper, Ted M. Dawson
Anna S. Pollack, Christian A. Kunder, Chandler C. Ho, Josephine Chou, Andrew J. Pollack, Rachel L. P. Geisick, Bing M. Zhang, Robert B. West, James D. Brooks, Jonathan R. Pollack
Mutations and deletions in TP53 are associated with adverse outcomes in patients with myeloid malignancies and developing improved therapies for TP53-mutant leukemias is of urgent need. Here we identify mutations in TET2 as the most common co-occurring mutation in TP53 mutant acute myeloid leukemia (AML) patients. In mice, combined hematopoietic-specific deletion of TET2 and TP53 resulted in enhanced self-renewal compared to deletion of either gene alone. Tp53/Tet2 double knockout mice developed serially transplantable AML. Both mice and AML patients with combined TET2/TP53 alterations upregulated innate immune signaling in malignant granulocyte-monocyte progenitors (GMPs), which had leukemia-initiating capacity. A20 governs the leukemic maintenance by triggering aberrant non-canonical NF-κB signaling. Mice with Tp53/Tet2 loss had expansion of monocytic myeloid-derived suppressor cells (MDSCs), which impaired T cell proliferation and activation. Moreover, mice and AML patients with combined TP53/TET2 alterations displayed increased expression of the TIGIT ligand, CD155, on malignant cells. TIGIT blocking antibodies augmented NK cell-mediated killing of Tp53/Tet2 double-mutant AML cells, reduced leukemic burden, and prolonged survival in Tp53/Tet2 double knockout mice. These findings uncover a leukemia-promoting link between TET2 and TP53 mutations and highlight therapeutic strategies to overcome the immunosuppressive bone marrow environment in this adverse subtype of AML.
Pu Zhang, Ethan C. Whipp, Sarah J. Skuli, Mehdi Gharghabi, Caner Saygin, Steven A. Sher, Martin Carroll, Xiangyu Pan, Eric D. Eisenmann, Tzung-Huei Lai, Bonnie K. Harrington, Wing Keung Chan, Youssef Youssef, Bingyi Chen, Alex Penson, Alexander M. Lewis, Cynthia R. Castro, Nina Fox, Ali Cihan, Jean-Benoit Le Luduec, Susan DeWolf, Tierney Kauffman, Alice S. Mims, Daniel Canfield, Hannah Phillips, Katie E. Williams, Jami Shaffer, Arletta Lozanski, Tzyy-Jye Doong, Gerard Lozanski, Charlene Mao, Christopher J. Walker, James S. Blachly, Anthony F. Daniyan, Lapo Alinari, Robert A. Baiocchi, Yiping Yang, Nicole R. Grieselhuber, Moray J. Campbell, Sharyn D. Baker, Bradley W. Blaser, Omar Abdel-Wahab, Rosa Lapalombella
Phosphorylation of Smad3 is a critical mediator of TGF-β signaling, which plays an important role in regulating innate immune responses. However, whether Smad3 activation can be regulated in innate immune cells in TGF-β-independent contexts remains poorly understood. Here, we show that Smad3 is activated through the phosphorylation of its C-terminal residues (pSmad3C) in murine and human macrophages in response to bacterial and viral ligands, which is mediated by Activin A in a TGF-β independent manner. Specifically, infectious ligands, such as LPS, induced secretion of Activin A through the transcription factor STAT5 in macrophages, and Activin A signaling in turn activated pSmad3C. This Activin A-Smad3 axis controlled the mitochondrial ATP production and ATP conversion into adenosine by CD73 in macrophages, enforcing an anti-inflammatory mechanism. Consequently, mice with a deletion of Activin A receptor 1b specifically in macrophages (Acvr1bf/f-Lyz2cre) succumbed more to sepsis due to uncontrolled inflammation and exhibited exacerbated skin disease in a mouse model of imiquimod-induced psoriasis. Thus, we have revealed a previously unrecognized natural brake to inflammation in macrophages that occurs through the activation of Smad3 in an Activin A-dependent manner.
Thierry Gauthier, Yun-Ji Lim, Wenwen Jin, Na Liu, Liliana C. Patiño, Weiwei Chen, James Warren, Daniel Martin, Robert J. Morell, Gabriela S. Dveksler, Gloria H. Su, WanJun Chen
Sterile acute kidney injury (AKI) is common in the clinic and frequently associated with unexplained hypoxemia that does not improve with dialysis. AKI induces remote lung inflammation with neutrophil recruitment in mice and humans, but which cellular cues establish neutrophilic inflammation and how it contributes to hypoxemia is not known. Here we report that AKI induces rapid intravascular neutrophil retention in lung alveolar capillaries without extravasation into tissue or alveoli, causing hypoxemia by reducing lung capillary blood flow in the absence of substantial lung interstitial or alveolar edema. In contrast to direct ischemic lung injury, lung neutrophil recruitment during remote lung inflammation did not require cues from intravascular non-classical monocytes or tissue-resident alveolar macrophages. Instead, lung neutrophil retention depended on neutrophil chemoattractant CXCL2 released by activated classical monocytes. Comparative single-cell RNA-sequencing analysis of direct and remote lung inflammation revealed that alveolar macrophages are highly activated and produce CXCL2 only in direct lung inflammation. Establishing a CXCL2 gradient into the alveolus by intratracheal CXCL2 administration during AKI-induced remote lung inflammation enabled neutrophils to extravasate. We thus discovered important differences in lung neutrophil recruitment in direct versus remote lung inflammation and identified lung capillary neutrophil retention that negatively affects oxygenation by causing a ventilation-perfusion mismatch as a driver of AKI-induced hypoxemia.
Yohei Komaru, Liang Ning, Carine Lama, Anusha Suresh, Eirini Kefaloyianni, Mark J. Miller, Shinichi Kawana, Hailey M. Shepherd, Wenjun Li, Daniel Kreisel, Andreas Herrlich
Acetylsalicylic acid (ASA) can exert proanaphylactic effects, but the extent of this phenomenon and its underlying mechanisms are undefined. Yet, low homeostatic prostaglandin E2 (PGE2) levels have been associated with anaphylaxis. In this study, we investigated whether the proanaphylactic effect of ASA is PGE2 dependent. We assessed the effect of ASA in experimental anaphylaxis models, analyzed a large dataset of patients with anaphylaxis, and performed titrated allergen challenges in ASA-treated allergic individuals. Registry data indicated an increased risk for severe anaphylaxis in patients with ASA comedication. ASA pretreatment aggravated allergen-dependent anaphylaxis in mice, whereas histamine-induced anaphylaxis remained unaffected. Exacerbation was due to reduced PGE2, as its stabilization or the use of prostanoid E receptor (EP) agonists reversed the proanaphylactic effects of ASA. EP2-, EP3-, and EP4 receptor–deficient mice revealed that each receptor individually contributed to ASA susceptibility. In patients with allergy, prior ASA intake increased skin responsiveness to allergen but not to histamine. Conversely, the responses of basophils to ex vivo FcεRI aggregation remained unaltered, indicating that ASA operated by enhancing the stimulability of mast cells in a PGE2-dependent manner. Collectively, our data reveal a central role of the PGE2 network in ASA-aggravated anaphylaxis. EP receptors could be potential targets to prevent or alter the outcome of anaphylaxis.
Philipp Globig, Payam Morakabati, Veronika Höfer, Diana M. Willmes, Magda Babina, Margitta Worm
Elevated Angiopoietin-2 is associated with diverse inflammatory conditions including sepsis, a leading global cause of mortality. During inflammation, Angiopoietin-2 antagonizes the endothelium-enriched receptor Tie2 to destabilize the vasculature. In other contexts, Angiopoietin-2 stimulates Tie2. The basis for context-dependent antagonism remains incompletely understood. Here we show that inflammation-induced proteolytic cleavage of Angiopoietin-2 converts this ligand from Tie2 agonist to antagonist. Conditioned media from stimulated macrophages induced endothelial Angiopoietin-2 secretion. Unexpectedly, this was associated with reduction of the 75 kDa full-length protein and appearance of new 25 and 50 kDa C-terminal fragments. Peptide sequencing proposed cathepsin K as a candidate protease. Cathepsin K was necessary and sufficient to cleave Angiopoietin-2. Recombinant 25 and 50 kDa Angiopoietin-2 fragments (cANGPT225, cANGPT250) bound and antagonized Tie2. Cathepsin K inhibition with the Phase-3 small molecule inhibitor odanacatib improved survival in distinct murine sepsis models. Full-length Angiopoietin-2 enhanced survival in endotoxemic mice administered odanacatib and, conversely, increased mortality in the drug’s absence. Odanacatib’s benefit was reversed by heterologous cANGPT225. Septic humans accumulated circulating Angiopoietin-2 fragments, which were associated with adverse outcomes. These results identify cathepsin K as a candidate marker of sepsis and a proteolytic mechanism for the conversion of Angiopoietin-2 from Tie2 agonist to antagonist with therapeutic implications for inflammatory conditions associated with Angiopoietin-2 induction.
Takashi Suzuki, Erik Loyde, Sara Chen, Valerie Etzrodt, Temitayo O. Idowu, Amanda J. Clark, Marie Christelle Saade, Brenda Mendoza Flores, Shulin Lu, Gabriel Birrane, Vamsidhara Vemireddy, Benjamin Seeliger, Sascha David, Samir M. Parikh
Siqi Ming, Xingyu Li, Jingxian Shu, Xi Huang, Yongjian Wu
Mammalian injury responses are predominantly characterized by fibrosis and scarring rather than functional regeneration. This limited regenerative capacity in mammals could reflect a loss of pro-regeneration programs or active suppression by genes functioning akin to tumor suppressors. To uncover programs governing regeneration in mammals, we screened transcripts in human subjects following laser rejuvenation treatment and compared them to mice with enhanced Wound Induced Hair Neogenesis (WIHN), a rare example of mammalian organogenesis. We found that Rnasel-/- mice exhibit an increased regenerative capacity, with elevated WIHN through enhanced IL-36α. Consistent with RNase L’s known role to stimulate caspase-1, we found that pharmacologic inhibition of caspases promoted regeneration in an IL-36 dependent manner in multiple epithelial tissues. We identified a negative feedback loop, where RNase L activated caspase-1 restrains the pro-regenerative dsRNA-TLR3 signaling cascade through the cleavage of toll-like adaptor protein TRIF. Through integrated single-cell RNA sequencing and spatial transcriptomic profiling, we confirmed Oas & Il36 genes to be highly expressed at the site of wounding and are elevated in Rnasel-/- mice wounds. This work suggests that RNase L functions as a regeneration repressor gene, in a functional tradeoff that tempers immune hyper-activation during viral infection at the cost of inhibiting regeneration.
Charles S. Kirby, Nasif Islam, Eric Wier, Martin P. Alphonse, Evan Sweren, Gaofeng Wang, Haiyun Liu, Dongwon Kim, Ang Li, Sam S. Lee, Andrew M. Overmiller, Yingchao Xue, Sashank Reddy, Nathan K. Archer, Lloyd S. Miller, Jianshi Yu, Weiliang Huang, Jace W. Jones, Sooah Kim, Maureen A. Kane, Robert H. Silverman, Luis A. Garza
No posts were found with this tag.