Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Inflammation

  • 299 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 12
  • 13
  • 14
  • …
  • 29
  • 30
  • Next →
Prostaglandin I2 signaling licenses Treg suppressive function and prevents pathogenic reprogramming
Allison E. Norlander, … , Talal A. Chatila, R. Stokes Peebles, Jr.
Allison E. Norlander, … , Talal A. Chatila, R. Stokes Peebles, Jr.
Published February 2, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI140690.
View: Text | PDF

Prostaglandin I2 signaling licenses Treg suppressive function and prevents pathogenic reprogramming

  • Text
  • PDF
Abstract

T regulatory cells (Treg) restrain both the innate and adaptive immune systems to maintain homeostasis. Allergic airway inflammation, characterized by a type 2 (Th2) response that results from a breakdown of tolerance to innocuous environmental antigens, is negatively regulated by Treg. We previously reported that prostaglandin I2 (PGI2) promoted immune tolerance in models of allergic inflammation; however, the effect of PGI2 on Treg function was not investigated. Treg from mice deficient in the PGI2 receptor IP (IP KO) had impaired suppressive capabilities during allergic airway inflammatory responses compared to mice with PGI2 signaling was intact. IP KO Treg had significantly enhanced expression of immunoglobulin-like transcript 3 (ILT3) compared to wild-type Treg, which may contribute to the impairment of the IP KO Treg’s ability to suppress Th2 responses. Using fate-mapping mice, we reported that PGI2 signaling prevents Treg reprogramming toward a pathogenic phenotype. PGI2 analogs promoted the differentiation of naïve T cells to Treg in both mice and humans via repression of β-catenin signaling. Finally, a missense variant in IP in humans was strongly associated with chronic obstructive asthma. Together, these data support that PGI2 signaling licenses Treg suppressive function and that PGI2 is a therapeutic target to enhance Treg function.

Authors

Allison E. Norlander, Melissa H. Bloodworth, Shinji Toki, Jian Zhang, Weisong Zhou, Kelli L. Boyd, Vasiliy V. Polosukhin, Jacqueline-Yvonne Cephus, Zachary J. Ceneviva, Vivek D. Gandhi, Nowrin U. Chowdhury, Louis-Marie Charbonnier, Lisa M. Rogers, Janey Wang, David M. Aronoff, Lisa Bastarache, Dawn C. Newcomb, Talal A. Chatila, R. Stokes Peebles, Jr.

×

Macrophage AXL receptor tyrosine kinase inflames the heart after reperfused myocardial infarction
Matthew DeBerge, … , Ira Tabas, Edward B. Thorp
Matthew DeBerge, … , Ira Tabas, Edward B. Thorp
Published February 2, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI139576.
View: Text | PDF

Macrophage AXL receptor tyrosine kinase inflames the heart after reperfused myocardial infarction

  • Text
  • PDF
Abstract

Tyro3, AXL, and MerTK (TAM) receptors are activated in macrophages in response to tissue injury and as such have been proposed as therapeutic targets to promote inflammation resolution during sterile wound healing, including myocardial infarction. While the role of MerTK in cardioprotection is well-characterized, the unique role of the other structurally similar TAMs, and particularly AXL, in clinically-relevant models of myocardial ischemia-reperfused infarction (IRI) is comparatively unknown. Utilizing complementary approaches, validated by flow cytometric analysis of human and murine macrophage subsets and conditional genetic loss and gain of function, we uncover a unique maladaptive role for myeloid AXL during IRI in the heart. Cross signaling between AXL and TLR4 in cardiac macrophages directed a switch to glycolytic metabolism and secretion of proinflammatory IL-1β, leading to increased intramyocardial inflammation, adverse ventricular remodeling, and impaired contractile function. AXL interestingly functioned independently of cardioprotective MerTK to reduce the efficacy of cardiac repair, but like MerTK, was proteolytically cleaved. Administration of a selective small molecule AXL inhibitor alone improved cardiac healing, which was further enhanced in combination with blockade of MerTK cleavage. These data support further exploration of macrophage TAM receptors as therapeutic targets for myocardial infarction.

Authors

Matthew DeBerge, Kristofor Glinton, Manikandan Subramanian, Lisa D. Wilsbacher, Carla V. Rothlin, Ira Tabas, Edward B. Thorp

×

Tetracyclines improve experimental lymphatic filariasis pathology by disrupting interleukin-4 receptor-mediated lymphangiogenesis
Julio Furlong-Silva, … , Mark J. Taylor, Joseph D. Turner
Julio Furlong-Silva, … , Mark J. Taylor, Joseph D. Turner
Published January 12, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI140853.
View: Text | PDF

Tetracyclines improve experimental lymphatic filariasis pathology by disrupting interleukin-4 receptor-mediated lymphangiogenesis

  • Text
  • PDF
Abstract

Lymphatic filariasis is the major global cause of non-hereditary lymphoedema. We demonstrate the filarial nematode, Brugia malayi, induces lymphatic remodelling and impaired lymphatic drainage following parasitism of limb lymphatics in a mouse model. Lymphatic insufficiency was associated with elevated circulating lymphangiogenic mediators, including vascular endothelial growth factor C. Lymphatic insufficiency was dependent on type-2 adaptive immunity, interleukin-4 receptor, recruitment of C-C chemokine receptor-2 monocytes and alternatively-activated macrophages with pro-lymphangiogenic phenotype. Oral treatments with second-generation tetracyclines improved lymphatic function, while other classes of antibiotic had no significant effect. Second-generation tetracyclines directly targeted lymphatic endothelial cell proliferation and modified type-2 pro-lymphangiogenic macrophage development. Doxycycline treatment impeded monocyte recruitment, inhibited polarisation of alternatively-activated macrophages and suppressed T cell adaptive immune responses following infection. Our results determine a mechanism-of-action for the anti-morbidity effects of doxycycline in filariasis and supports clinical evaluation of second-generation tetracyclines as affordable, safe therapeutics for lymphoedemas of chronic inflammatory origin.

Authors

Julio Furlong-Silva, Stephen D. Cross, Amy E. Marriott, Nicolas Pionnier, John Archer, Andrew Steven, Stefan Schulte-Merker, Matthias Mack, Young-Kwon Hong, Mark J. Taylor, Joseph D. Turner

×

Cyclin A2 maintains colon homeostasis and is a prognostic factor in CRC
Yuchen Guo, … , Bénédicte Lemmers, Michael Hahne
Yuchen Guo, … , Bénédicte Lemmers, Michael Hahne
Published December 17, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI131517.
View: Text | PDF

Cyclin A2 maintains colon homeostasis and is a prognostic factor in CRC

  • Text
  • PDF
Abstract

To clarify the function of cyclin A2 in colon homeostasis and colorectal cancer (CRC), we generated mice deficient for cyclin A2 in colonic epithelial cells (CEC). Colons of those mice displayed architectural changes in the mucosa, and signs of inflammation as well as an increased proliferation of CEC associated with the appearance of low- and high-grade dysplasia. The main initial events triggering those alterations in cyclin A2 deficient CEC appear to be abnormal mitoses and DNA damage. Cyclin A2 deletion in CEC promoted the development of dysplasia and adenocarcinomas in the murine colitis-associated cancer model. We next explored the status of cyclin A2 expression in clinical CRC samples at the mRNA and protein level and found higher expression in tumors of stage I and II patients compared to those of stage III and IV. A meta-analysis of 11 transcriptome datasets comprising 2,239 primary CRC tumors displayed different CCNA2 (the mRNA coding for cyclin A2) expression levels among the CRC tumor subtypes with highest in CMS1 and lowest in CMS4. Moreover, high expression of CCNA2 was found to be a new independent prognosis factor for CRC tumors.

Authors

Yuchen Guo, Monica Gabola, Rossano Lattanzio, Conception Paul, Valérie Pinet, Ruizhi Tang, Hulya Turali, Julie Bremond, Ciro Longobardi, Chloé Maurizy, Quentin Da Costa, Pascal Finetti, Florence Boissière-Michot, Benjamin Rivière, Céline Lemmers, Séverine Garnier, François Bertucci, Inti Zlobec, Karim Chebli, Jamal Tazi, Rania Azar, Jean-Marie Blanchard, Peter Sicinski, Emilie Mamessier, Bénédicte Lemmers, Michael Hahne

×

Active bacterial modification of the host environment through RNA Polymerase II inhibition
Inès Ambite, … , Ulrich Dobrindt, Catharina Svanborg
Inès Ambite, … , Ulrich Dobrindt, Catharina Svanborg
Published December 15, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI140333.
View: Text | PDF

Active bacterial modification of the host environment through RNA Polymerase II inhibition

  • Text
  • PDF
Abstract

Unlike pathogens, which attack the host, commensal bacteria create a state of friendly coexistence. Here, we identified a mechanism of bacterial adaptation to the host niche, where they reside. Asymptomatic carrier strains were shown to inhibit RNA Polymerase II (Pol II) in host cells by targeting Ser2 phosphorylation; a step required for productive mRNA elongation. Assisted by a rare, spontaneous loss-of-function mutant from a human carrier, the bacterial NlpD protein was identified as a Pol II inhibitor. After internalization by host cells, NlpD was shown to target constituents of the Pol II phosphorylation complex (RPB1 and PAF1C), attenuating host gene expression. Therapeutic efficacy of the rNlpD protein was demonstrated in a urinary tract infection model, by reduced tissue pathology, accelerated bacterial clearance and attenuated Pol II-dependent gene expression. The findings suggest an intriguing, evolutionarily conserved mechanism for bacterial modulation of host gene expression, with a remarkable therapeutic potential.

Authors

Inès Ambite, Nina A. Filenko, Elisabed Zaldastanishvili, Daniel S.C. Butler, Thi Hien Tran, Arunima Chaudhuri, Parisa Esmaeili, Shahram Ahmadi, Sanchari Paul, Björn Wullt, Johannes Putze, Swaine L. Chen, Ulrich Dobrindt, Catharina Svanborg

×

Biomarkers of inflammation and repair in kidney disease progression
Jeremy Puthumana, … , Lloyd Cantley, Chirag R. Parikh
Jeremy Puthumana, … , Lloyd Cantley, Chirag R. Parikh
Published December 8, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI139927.
View: Text | PDF

Biomarkers of inflammation and repair in kidney disease progression

  • Text
  • PDF
Abstract

Introduction: Acute kidney injury and chronic kidney disease (CKD) are common in hospitalized patients. To inform clinical decision-making, more accurate information regarding risk of long-term progression to kidney failure is required. Methods: We enrolled 1538 hospitalized patients in a multicenter, prospective cohort study. Monocyte chemoattractant protein-1 (MCP-1/CCL2), uromodulin (UMOD), and YKL-40 (CHI3L1) were measured in urine samples collected during outpatient follow-up at 3 months. We followed patients for a median of 4.3 years and assessed the relationship between biomarker levels and changes in estimated glomerular filtration rate (eGFR) over time and the development of a composite kidney outcome (CKD incidence, CKD progression, or end-stage renal disease). We paired these clinical studies with investigations in mouse models of renal atrophy and renal repair to further understand the molecular basis of these markers in kidney disease progression. Results: Higher MCP-1 and YKL-40 levels were associated with greater eGFR decline and increased incidence of the composite renal outcome, whereas higher UMOD levels were associated with smaller eGFR declines and decreased incidence of the composite kidney outcome. A multimarker score increased prognostic accuracy and reclassification compared with traditional clinical variables alone. The mouse model of renal atrophy showed greater Ccl2 and Chi3l1 mRNA expression in infiltrating macrophages and neutrophils, respectively, and evidence of progressive renal fibrosis compared with the repair model. The repair model showed greater Umod expression in the loop of Henle and correspondingly less fibrosis. Conclusions: Biomarker levels at 3 months after hospitalization identify patients at risk for kidney disease progression. Funding: National Institutes of Health grants U01DK082223, U01DK082185, U01DK082192, U01DK082183, R01HL085757, R01DK098233, R01DK101507, R01DK114014, K23DK100468, R03DK111881, R01DK093771, K01DK120783, P30DK079310, P30DK114809.

Authors

Jeremy Puthumana, Heather Thiessen-Philbrook, Leyuan Xu, Steven G. Coca, Amit X. Garg, Jonathan Himmelfarb, Pavan K. Bhatraju, Talat Alp Ikizler, Edward Siew, Lorraine B. Ware, Kathleen D. Liu, Alan S. Go, James S. Kaufman, Paul L. Kimmel, Vernon M. Chinchilli, Lloyd Cantley, Chirag R. Parikh

×

TREM-1 orchestrates Angiotensin II-induced monocyte trafficking and promotes experimental abdominal aortic aneurysm
Marie Vandestienne, … , Giulia Chinetti, Hafid Ait-Oufella
Marie Vandestienne, … , Giulia Chinetti, Hafid Ait-Oufella
Published December 1, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI142468.
View: Text | PDF

TREM-1 orchestrates Angiotensin II-induced monocyte trafficking and promotes experimental abdominal aortic aneurysm

  • Text
  • PDF
Abstract

The triggering receptor expressed on myeloid cells-1 (TREM-1) drives inflammatory responses in several cardiovascular diseases but its role in abdominal aortic aneurysm (AAA) remains unknown. Our objective was to explore the role of TREM-1 in a mouse model of Angiotensin (Ang) II-induced AAA. TREM-1 expression was detected in mouse aortic aneurysm and colocalizes with macrophages. Trem1 gene deletion (Apoe-/-Trem1-/-), as well as TREM-1 pharmacological blockade with LR-12 peptide limited both AAA development and severity. Trem1 gene deletion attenuated the inflammatory response in the aorta, with a reduction of Il1b, Tnfa, Mmp2 and Mmp9 mRNA expression, and led to a decreased macrophage content, due to a reduction of Ly6Chi classical monocyte trafficking. Conversely, antibody-mediated TREM-1 stimulation exacerbated Ly6Chi monocyte aorta infiltration after AngII infusion through CD62L up-regulation and promoted pro-inflammatory signature in the aorta, resulting in worsening AAA severity. AngII infusion stimulated TREM-1 expression and activation on Ly6Chi monocytes through AngII Receptor Type I (AT1R). In human AAA, TREM-1 was detected and TREM1 mRNA expression correlated with SELL mRNA expression. Finally, circulating levels of sTREM-1 were increased in patients with AAA when compared to patients without AAA. In conclusion, TREM-1 is involved in AAA pathophysiology and may represent a promising therapeutic target in human.

Authors

Marie Vandestienne, Yujiao Zhang, Icia Santos-Zas, Rida Al-Rifai, Jeremie Joffre, Andreas Giraud, Ludivine Laurans, Bruno Esposito, Florence Pinet, Patrick Bruneval, Juliette Raffort, Fabien Lareyre, Jose Vilar, Amir Boufenzer, Lea Guyonnet, Coralie L. Guerin, Eric Clauser, Jean-Sébastien Silvestre, Sylvie Lang, Laurie Soulat-Dufour, Alain Tedgui, Ziad Mallat, Soraya Taleb, Alexandre Boissonnas, Marc Derive, Giulia Chinetti, Hafid Ait-Oufella

×

Mitochondrial dysfunction in inflammatory bowel disease alters intestinal epithelial metabolism of hepatic acylcarnitines
Sarah A. Smith, … , Hiroshi Nakagawa, Gary D. Wu
Sarah A. Smith, … , Hiroshi Nakagawa, Gary D. Wu
Published November 3, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI133371.
View: Text | PDF

Mitochondrial dysfunction in inflammatory bowel disease alters intestinal epithelial metabolism of hepatic acylcarnitines

  • Text
  • PDF
Abstract

As the interface between the gut microbiota and the mucosal immune system, there has been great interest in the maintenance of colonic epithelial integrity through mitochondrial oxidation of butyrate, a short-chain fatty acid produced by the gut microbiota. Herein, we showed that the intestinal epithelium can also oxidize long-chain fatty acids, and that luminally-delivered acylcarnitines in bile can be consumed via apical absorption by the intestinal epithelium resulting in mitochondrial oxidation. Finally, intestinal inflammation led to mitochondrial dysfunction in the apical domain of the surface epithelium that may reduce the consumption of fatty acids, contributing to higher concentrations of fecal acylcarnitines in murine Citrobacter rodentium-induced colitis and human inflammatory bowel disease. These results emphasized the importance of both the gut microbiota and the liver in the delivery of energy substrates for mitochondrial metabolism by the intestinal epithelium.

Authors

Sarah A. Smith, Sayaka A. Ogawa, Lillian Chau, Kelly A. Whelan, Kathryn E. Hamilton, Jie Chen, Lu Tan, Eric Z. Chen, Sue Keilbaugh, Franz Fogt, Meenakshi Bewtra, Jonathan Braun, Ramnik J. Xavier, Clary B. Clish, Barry Slaff, Aalim M. Weljie, Frederic D. Bushman, James D. Lewis, Hongzhe Li, Stephen R. Master, Michael J. Bennett, Hiroshi Nakagawa, Gary D. Wu

×

mTOR-dependent translation amplifies microglia priming in aging mice
Lily Keane, … , Michael Thomas Heneka, Melania Capasso
Lily Keane, … , Michael Thomas Heneka, Melania Capasso
Published October 27, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI132727.
View: Text | PDF | Corrigendum

mTOR-dependent translation amplifies microglia priming in aging mice

  • Text
  • PDF
Abstract

Microglia maintain homeostasis in the brain. However, with age, they become primed and respond more strongly to inflammatory stimuli. We show here that microglia from aged mice upregulated mammalian target of rapamycin (mTOR) complex 1 signaling regulating translation, as well as protein levels of inflammatory mediators. Genetic ablation of mTOR signaling showed a dual, yet contrasting effect on microglia priming: it caused an NF-kB-dependent upregulation of priming genes at mRNA level; however, mice displayed reduced cytokine protein levels, diminished microglia activation and milder sickness behavior. The effect on translation was dependent on reduced phosphorylation of 4EBP1, resulting in decreased binding of eIF4E to eIF4G. Similar changes were present in aged human microglia and in damage-associated microglia, indicating upregulation of mTOR-dependent translation is an essential step licensing microglia priming in aging and neurodegeneration.

Authors

Lily Keane, Ignazio Antignano, Sean-Patrick Riechers, Raphael Zollinger, Anaelle A. Dumas, Nina Offermann, Maria E. Bernis, Jenny Russ, Frederike J. Graelmann, Patrick N. McCormick, Julia Esser, Dario Tejera, Ai Nagano, Jun Wang, Claude Chelala, Yvonne Biederbick, Annett Halle, Paolo Salomoni, Michael Thomas Heneka, Melania Capasso

×

Neutrophilic inflammation during lung development disrupts elastin assembly and predisposes adult mice to COPD
John T. Benjamin, … , Susan Guttentag, Timothy S. Blackwell
John T. Benjamin, … , Susan Guttentag, Timothy S. Blackwell
Published October 27, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI139481.
View: Text | PDF

Neutrophilic inflammation during lung development disrupts elastin assembly and predisposes adult mice to COPD

  • Text
  • PDF
Abstract

Emerging evidence indicates that early life events can increase the risk for developing chronic obstructive pulmonary disease (COPD). Using an inducible transgenic mouse model for NF-κB activation in the airway epithelium, we found that a brief period of inflammation during the saccular stage [postnatal day (PN)3 - PN5] but not alveolar stage (PN10 - PN12) of lung development disrupts elastic fiber assembly, resulting in permanent reduction in lung function and development of a COPD-like lung phenotype that progresses through 24 months of age. Neutrophil depletion prevented disruption of elastic fiber assembly and restored normal lung development. Mechanistic studies uncovered a role for neutrophil elastase (NE) in downregulating expression of critical elastic fiber assembly components, particularly fibulin-5 and elastin. Further, both purified human NE and NE-containing exosomes from tracheal aspirates of premature infants with lung inflammation down-regulated elastin and fibulin-5 expression by saccular stage mouse lung fibroblasts. Together, our studies define a critical developmental window for assembling the elastin scaffold in the distal lung, which is required to support lung structure and function throughout the lifespan. While neutrophils play a well-recognized role in COPD development in adults, neutrophilic inflammation may also contribute to early life predisposition to COPD.

Authors

John T. Benjamin, Erin Plosa, Jennifer Sucre, Riet van der Meer, Shivangi Dave, Sergey S. Gutor, David Nichols, Peter Gulleman, Christopher Jetter, Wei Han, Matthew K. Xin, Peter C. Dinella, Ashley Catanzarite, Seunghyi Kook, Kalsang Dolma, Charitharth V. Lal, Amit Gaggar, J. Edwin Blalock, Dawn C. Newcomb, Bradley W. Richmond, Jonathan A. Kropski, Lisa R. Young, Susan Guttentag, Timothy S. Blackwell

×
  • ← Previous
  • 1
  • 2
  • …
  • 12
  • 13
  • 14
  • …
  • 29
  • 30
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts