Cardiac macrophages/monocytes participate in maintaining homeostasis and orchestrating cardiac responses upon injury. However, the function of specific macrophage/monocyte subtypes and the related cell fate commitment mechanisms remain elusive in regenerative and nonregenerative hearts due to their cellular heterogeneities. Using spatiotemporal single-cell epigenomic analysis of cardiac macrophages/monocytes in regenerative (P1) and nonregenerative (P10) mouse hearts post injury, we found that P1 hearts accumulate reparative Arg1+ macrophages, while proinflammatory S100a9+Ly6c+ monocytes are uniquely abundant during nonregenerative remodeling. Moreover, blocking chemokine CXCR2 to inhibit the specification of the S100a9+Ly6c+-biased inflammatory fate in P10 hearts resulted in elevated wound repair responses and marked improvements in cardiac function after injury. Single-cell RNA-seq further confirmed an increased Arg1+ macrophage subpopulation after CXCR2 blockade, which was accomplished by increased expression of wound repair-related genes and reduced expression of proinflammatory genes. Collectively, our findings provide instructive insights into the molecular mechanisms underlying the function and fate specification of heterogeneous macrophages/monocytes during cardiac repair and identify potential therapeutic targets for myocardial infarction.
Mingzhu Fu, Shengtao Jia, Longhui Xu, Xin Li, Yufang Lv, Yulong Zhong, Shanshan Ai
The burden of senescent hepatocytes correlates with MASLD severity but mechanisms driving senescence, and how it exacerbates MASLD are poorly understood. Hepatocytes become senescent when Smoothened (Smo) is deleted to disrupt Hedgehog signaling. We aimed to determine if the secretomes of Smo-deficient hepatocytes perpetuate senescence to drive MASLD progression. RNA seq analysis confirmed that hepatocyte populations of MASLD livers are depleted of Smo(+) cells and enriched with senescent cells. When fed CDA-HFD, Smo(-) mice had lower antioxidant markers and developed worse DNA damage, senescence, MASH and liver fibrosis than Smo(+) mice. Sera and hepatocyte-conditioned medium from Smo(-) mice were depleted of thymidine phosphorylase (TP), a protein that maintains mitochondrial fitness. Treating Smo(-) hepatocytes with TP reduced senescence and lipotoxicity; inhibiting TP in Smo(+) hepatocytes had the opposite effects and exacerbated hepatocyte senescence, MASH, and fibrosis in CDA-HFD-fed mice. Therefore, we found that inhibiting Hedgehog signaling in hepatocytes promotes MASLD by suppressing hepatocyte production of proteins that prevent lipotoxicity and senescence.
Ji Hye Jun, Kuo Du, Rajesh Kumar Dutta, Raquel Maeso-Diaz, Seh-hoon Oh, Liuyang Wang, Guannan Gao, Ana Ferreira, Jon Hill, Steven S. Pullen, Anna Mae Diehl
Tissue regeneration is orchestrated by macrophages that clear damaged cells and promote regenerative inflammation. How macrophages spatially adapt and diversify their functions to support the architectural requirements of actively regenerating tissue remains unknown. In this study, we reconstructed the dynamic trajectories of myeloid cells isolated from acutely injured and early-stage dystrophic muscles. We identified divergent subsets of monocytes/macrophages and dendritic cells (DCs) and validated markers (e.g., GPNMB) and transcriptional regulators associated with defined functional states. In dystrophic muscle, specialized repair-associated subsets exhibited distinct macrophage diversity and reduced DC heterogeneity. Integrating spatial transcriptomics analyses with immunofluorescence uncovered the ordered distribution of subpopulations and multilayered regenerative inflammation zones (RIZs) where distinct macrophage subsets are organized in functional zones around damaged myofibers supporting all phases of regeneration. Importantly, intermittent glucocorticoid treatment disrupted the RIZs. Our findings suggest that macrophage subtypes mediated the development of the highly ordered architecture of regenerative tissues, unveiling the principles of the structured yet dynamic nature of regenerative inflammation supporting effective tissue repair.
Andreas Patsalos, Laszlo Halasz, Darby Oleksak, Xiaoyan Wei, Gergely Nagy, Petros Tzerpos, Thomas Conrad, David W. Hammers, H. Lee Sweeney, Laszlo Nagy
Background Cystic kidney disease (CyKD) is a predominantly familial disease in which gene discovery has been led by family-based and candidate gene studies, an approach that is susceptible to ascertainment and other biases. Methods Using whole genome sequencing data from 1,209 cases and 26,096 ancestry-matched controls participating in the 100,000 Genomes Project, we adopted hypothesis-free approaches to generate quantitative estimates of disease risk for each genetic contributor to CyKD, across genes, variant types and allelic frequencies. Results In 82.3% of cases, a qualifying potentially disease-causing rare variant in an established gene was found. There was an enrichment of rare coding, splicing, and structural variants in known CyKD genes, with novel statistically significant gene-based signals in COL4A3 and (monoallelic) PKHD1. Quantification of disease risk for each gene (with replication in the separate UK BioBank study) revealed substantially lower risk associated with genes more recently associated with autosomal dominant polycystic kidney disease, with odds ratios for some below what might usually be regarded as necessary for classical Mendelian inheritance. Meta-analysis of common variants did not reveal significant associations but suggested this category of variation contributes 3-9% to the heritability of CyKD across European ancestries. Conclusion By providing unbiased quantification of risk effects per gene, this research suggests that not all rare variant genetic contributors to CyKD are equally likely to manifest as a Mendelian trait in families. This information may inform genetic testing and counselling in the clinic. Keywords: genomics, cystic kidney disease, renal, ADPKD, WGS
Omid Sadeghi-Alavijeh, Melanie MY. Chan, Gabriel T. Doctor, Catalin D. Voinescu, Alexander Stuckey, Athanasios Kousathanas, Alexander T. Ho, Horia C. Stanescu, Detlef Bockenhauer, Richard N. Sandford, Adam P. Levine, Daniel P. Gale
Jade Bath, Elisabet Bjånes, Cengiz Goekeri, Jeff Hsiao, Deniz Uzun, Geraldine Nouailles, Victor Nizet, Katharina Ribbeck
Obesity is linked to an increased risk of atrial fibrillation (AF) via increased oxidative stress. While NADPH oxidase II (NOX2), a major source of oxidative stress and reactive oxygen species (ROS) in the heart predisposes to AF, the underlying mechanisms remain unclear. Here, we studied NOX2-mediated ROS production in obesity-mediated AF using Nox2-knock-out (KO) mice and mature human induced pluripotent stem cell-derived atrial cardiomyocytes (hiPSC-aCMs). Diet-induced obesity (DIO) mice and hiPSC-aCMs treated with palmitic acid (PA) were infused with a NOX blocker (apocynin) and a NOX2-specific inhibitor, respectively. We showed that NOX2 inhibition normalized atrial action potential duration and abrogated obesity-mediated ion channel remodeling with reduced AF burden. Unbiased transcriptomics analysis revealed that NOX2 mediates atrial remodeling in obesity-mediated AF in DIO mice, PA-treated hiPSC-aCMs, and human atrial tissue from obese individuals by upregulation of paired-like homeodomain transcription factor 2 (PITX2). Furthermore, hiPSC-aCMs treated with hydrogen peroxide, a NOX2 surrogate, displayed increased PITX2 expression, establishing a mechanistic link between increased NOX2-mediated ROS production and modulation of PITX2. Our findings offer insights into possible mechanisms through which obesity triggers AF and support NOX2 inhibition as a potential novel prophylactic or adjunctive therapy for patients with obesity-mediated AF.
Arvind Sridhar, Jaime DeSantiago, Hanna Chen, Mahmud Arif Pavel, Olivia Ly, Asia Owais, Miles Barney, Jordan Jousma, Sarath Babu Nukala, Khaled Abdelhady, Malek Massad, Lona Ernst Rizkallah, Sang-Ging Ong, Jalees Rehman, Dawood Darbar
Strategies beyond hormone-related therapy should need to be developed to improve prostate cancer mortalityfor better disease management. Here we show that FUBP1 and its methylation are essential for prostate cancer progression, and a competitive peptide interfering with FUBP1 methylation suppresses the development of prostate cancer. FUBP1 accelerated prostate cancer development across in various pre-clinical models. PRMT5-mediated FUBP1 methylation, regulated by BRD4, was crucial for its oncogenic effect and correlated with earlier biochemical recurrence shorter treatment durations in our patient cohort. Suppressed prostate cancer progression was observed in different various genetic mouse models expressing FUBP1 mutants deficient in PRMT5-mediated methylation. A competitive peptide, which was delivered through nanocomplexes, successfully disrupted the interaction of FUBP1 with PRMT5, blocked FUBP1 methylation, and inhibited prostate cancer development in different various pre-clinical models. Overall, our findings suggest that targeting FUBP1 methylation provides a potentially therapeutic strategy for disease prostate cancer management.
Weiwei Yan, Xun Liu, Xuefeng Qiu, Xuebin Zhang, Jiahui Chen, Kai Xiao, Ping Wu, Chao Peng, Xiaolin Hu, Zengming Wang, Jun Qin, Liming Sun, Luonan Chen, Denglong Wu, Shengsong Huang, Lichen Yin, Zhenfei Li
Endometriosis is a debilitating, chronic inflammatory disease affecting ~10% of reproductive age women worldwide with no cure. While macrophages have been intrinsically linked to the pathophysiology of endometriosis, targeting them therapeutically has been extremely challenging due to their high heterogeneity and because these disease-associated macrophages (DAMs) can be either pathogenic or protective. Here, we reported identification of pathogenic macrophages characterized by TET3 overexpression in human endometriosis lesions. We showed that factors from the disease microenvironment upregulated TET3 expression transforming macrophages into pathogenic DAMs. TET3 overexpression stimulated pro-inflammatory cytokine production via a feedback mechanism involving inhibition of let-7 miRNA expression. Remarkably, these cells relied on TET3 overexpression for survival, hence vulnerable to TET3 knockdown. We demonstrated that Bobcat339, a synthetic cytosine derivative, triggered TET3 degradation both in human and mouse macrophages. This degradation was dependent on a VHL E3 ubiquitin ligase whose expression was also upregulated in TET3-overexpressing macrophages. Furthermore, depleting TET3-overexpressing macrophages either through myeloid-specific Tet3 ablation or using Bobcat339 strongly inhibited endometriosis progression in mice. Our results defined TET3-overexpressing macrophages as key pathogenic contributors to and attractive therapeutic targets for endometriosis. Our findings may also be applicable to other chronic inflammatory diseases where DAMs have important roles.
Haining Lv, Beibei Liu, Yangyang Dai, Feng Li, Stefania Bellone, Yuping Zhou, Ramanaiah Mamillapalli, Dejian Zhao, Muthukumaran Venkatachalapathy, Yali Hu, Gordon G. Carmichael, Da Li, Hugh S. Taylor, Yingqun Huang
Despite being the leading cause of childhood mortality, pediatric gliomas have been relatively understudied, and the repurposing of immunotherapies has not been successful. Whole transcriptome sequencing, single-cell sequencing, and sequential multiplex immunofluorescence were used to identify an immunotherapy strategy evaluated in multiple preclinical glioma models. MAPK-driven pediatric gliomas have a higher interferon signature relative to other molecular subgroups. Single-cell sequencing identified an activated and cytotoxic microglia population designated MG-Act in BRAF-fused MAPK-activated pilocytic astrocytoma (PA), but not in high-grade gliomas or normal brain. TIM3 is expressed on MG-Act and on the myeloid cells lining the tumor vasculature but not normal brain. TIM3 expression becomes upregulated on immune cells in the PA microenvironment and anti-TIM3 reprograms ex vivo immune cells from human PAs to a pro-inflammatory cytotoxic phenotype. In a genetically engineered murine model of MAPK-driven low-grade gliomas, anti-TIM3 treatment increased median survival over IgG and anti-PD1 treated mice. ScRNA sequencing data during the therapeutic window of anti-TIM3 demonstrates enrichment of the MG-Act population. The therapeutic activity of anti-TIM3 is abrogated in the CX3CR1 microglia knockout background. These data support the use of anti-TIM3 in clinical trials of pediatric low-grade MAPK-driven gliomas.
Shashwat Tripathi, Hinda Najem, Corey Dussold, Sebastian Pacheco, Ruochen Du, Moloud Sooreshjani, Lisa A. Hurley, James P. Chandler, Roger Stupp, Adam M. Sonabend, Craig M. Horbinski, Rimas V. Lukas, Joanne Xiu, Giselle Y. López, Theodore P. Nicolaides, Valerie Brown, Nitin R. Wadhwani, Sandi K. Lam, Charles David James, Ganesh Rao, Maria G. Castro, Amy B. Heimberger, Michael DeCuypere
BACKGROUND. Teplizumab, a FcR non-binding anti-CD3 mAb, is approved to delay progression of type 1 diabetes (T1D) at-risk patients. Previous investigations described the immediate effects of the 14-day treatment, but longer-term effects of the drug remain unknown. METHODS. With an extended analysis of study participants, we found that 36% were undiagnosed or remained clinical diabetes free after 5 years suggesting operational tolerance. Using single cell RNA-seq, we compared the phenotypes, transcriptome, and repertoire of peripheral blood CD8+ T cells including autoreactive T cells from study participants before and after teplizumab and features of responders and non-responders. RESULTS. At 3 months, there were transcriptional signatures of cell activation in CD4+ and CD8+ T cells including signaling that was reversed at 18 months. At that time, there was reduced expression of genes in T cell receptor and activation pathways in clinical responders. In CD8+ T cells, we found increased expression of genes associated with exhaustion and immune regulation with teplizumab treatment. These transcriptional features were further confirmed in an independent cohort. Pseudotime analysis showed differentiation of CD8+ exhausted and memory cells with teplizumab treatment. IL7R expression was reduced and patients with lower expression of CD127 had longer diabetes free intervals. In addition, the frequency of autoantigen reactive CD8+ T cells, that expanded in the placebo group over 18 months, did not increase in the teplizumab group. CONCLUSION. These findings indicate that teplizumab promotes operational tolerance in T1D, involving activation followed by exhaustion and regulation and prevents expansion of autoreactive T cells. TRIAL REGISTRATION. ClinicalTrials.gov: NCT01030861. FUNDING. NIDDK/NIH, Juvenile Diabetes Research Foundation.
Ana Lledó-Delgado, Paula Preston-Hurlburt, Sophia Currie, Pamela Clark, Peter S. Linsley, S. Alice Long, Can Liu, Galina Koroleva, Andrew J. Martins, John S. Tsang, Kevan C. Herold
No posts were found with this tag.