Despite being the leading cause of childhood mortality, pediatric gliomas have been relatively understudied, and the repurposing of immunotherapies has not been successful. Whole transcriptome sequencing, single-cell sequencing, and sequential multiplex immunofluorescence were used to identify an immunotherapy strategy evaluated in multiple preclinical glioma models. MAPK-driven pediatric gliomas have a higher interferon signature relative to other molecular subgroups. Single-cell sequencing identified an activated and cytotoxic microglia population designated MG-Act in BRAF-fused MAPK-activated pilocytic astrocytoma (PA), but not in high-grade gliomas or normal brain. TIM3 is expressed on MG-Act and on the myeloid cells lining the tumor vasculature but not normal brain. TIM3 expression becomes upregulated on immune cells in the PA microenvironment and anti-TIM3 reprograms ex vivo immune cells from human PAs to a pro-inflammatory cytotoxic phenotype. In a genetically engineered murine model of MAPK-driven low-grade gliomas, anti-TIM3 treatment increased median survival over IgG and anti-PD1 treated mice. ScRNA sequencing data during the therapeutic window of anti-TIM3 demonstrates enrichment of the MG-Act population. The therapeutic activity of anti-TIM3 is abrogated in the CX3CR1 microglia knockout background. These data support the use of anti-TIM3 in clinical trials of pediatric low-grade MAPK-driven gliomas.
Shashwat Tripathi, Hinda Najem, Corey Dussold, Sebastian Pacheco, Ruochen Du, Moloud Sooreshjani, Lisa A. Hurley, James P. Chandler, Roger Stupp, Adam M. Sonabend, Craig M. Horbinski, Rimas V. Lukas, Joanne Xiu, Giselle Y. López, Theodore P. Nicolaides, Valerie Brown, Nitin R. Wadhwani, Sandi K. Lam, Charles David James, Ganesh Rao, Maria G. Castro, Amy B. Heimberger, Michael DeCuypere
BACKGROUND. Teplizumab, a FcR non-binding anti-CD3 mAb, is approved to delay progression of type 1 diabetes (T1D) at-risk patients. Previous investigations described the immediate effects of the 14-day treatment, but longer-term effects of the drug remain unknown. METHODS. With an extended analysis of study participants, we found that 36% were undiagnosed or remained clinical diabetes free after 5 years suggesting operational tolerance. Using single cell RNA-seq, we compared the phenotypes, transcriptome, and repertoire of peripheral blood CD8+ T cells including autoreactive T cells from study participants before and after teplizumab and features of responders and non-responders. RESULTS. At 3 months, there were transcriptional signatures of cell activation in CD4+ and CD8+ T cells including signaling that was reversed at 18 months. At that time, there was reduced expression of genes in T cell receptor and activation pathways in clinical responders. In CD8+ T cells, we found increased expression of genes associated with exhaustion and immune regulation with teplizumab treatment. These transcriptional features were further confirmed in an independent cohort. Pseudotime analysis showed differentiation of CD8+ exhausted and memory cells with teplizumab treatment. IL7R expression was reduced and patients with lower expression of CD127 had longer diabetes free intervals. In addition, the frequency of autoantigen reactive CD8+ T cells, that expanded in the placebo group over 18 months, did not increase in the teplizumab group. CONCLUSION. These findings indicate that teplizumab promotes operational tolerance in T1D, involving activation followed by exhaustion and regulation and prevents expansion of autoreactive T cells. TRIAL REGISTRATION. ClinicalTrials.gov: NCT01030861. FUNDING. NIDDK/NIH, Juvenile Diabetes Research Foundation.
Ana Lledó-Delgado, Paula Preston-Hurlburt, Sophia Currie, Pamela Clark, Peter S. Linsley, S. Alice Long, Can Liu, Galina Koroleva, Andrew J. Martins, John S. Tsang, Kevan C. Herold
Variants of the G protein-coupled receptor 75 (GPR75) are associated with lower BMI in large-scale human exome sequencing studies. However, how GPR75 regulates body weight remains poorly understood. Using random germline mutagenesis in mice, we identified a missense allele (Thinner) of Gpr75 that resulted in a lean phenotype and verified the decreased body weight and fat weight in Gpr75 knockout (Gpr75–/–) mice. Gpr75–/– mice displayed reduced food intake under a high-fat diet (HFD), and pair-feeding normalized their body weight. The endogenous GPR75 protein was exclusively expressed in the brains of 3xFlag tagged Gpr75 knock-in (3xFlag-Gpr75) mice, with consistent expression across different brain regions. GPR75 interacted with Gαq to activate various signaling pathways after HFD feeding. Additionally, GPR75 was localized in the primary cilia of hypothalamic cells, whereas the Thinner mutation (L144P) and human GPR75 variants with lower BMI failed to localize in the cilia. Loss of GPR75 selectively inhibited weight gain in HFD-fed mice but failed to suppress the development of obesity in Leptin ob mice and Adenylate cyclase 3 (Adcy3) mutant mice on a chow diet. Our data reveal that GPR75 is a ciliary protein expressed in the brain and plays an important role in regulating food intake.
Yiao Jiang, Yu Xun, Zhao Zhang
Shruti Gupta, Olivia Green-Lingren, Sudhir Bhimaniya, Aleksandra Krokhmal, Heather Jacene, Marlies Ostermann, Sugama Chicklore, Ben Sprangers, Christophe M. Deroose, Sandra M. Herrmann, Sophia L. Wells, Sarah A. Kaunfer, Jessica L. Ortega, Clara Garcia-Carro, Michael Bold, Kevin L. Chen, Meghan E. Sise, Pedram Heidari, Wai Lun Will Pak, Meghan D. Lee, Pazit Beckerman, Yael Eshet, Raymond K. Hsu, Miguel Hernandez Pampaloni, Arash Rashidi, Norbert Avril, Vicki Donley, Zain Mithani, Russ Kuker, Muhammad O Awiwi, Mindy X. Wang, Sujal I. Shah, Michael D. Weintraub, Heiko Schoder, Raad B. Chowdhury, Harish Seethapathy, Kerry L. Reynolds, Maria Jose Soler, Ala Abudayyeh, Ilya Glezerman, David E. Leaf
The study of transcription factors that determine specialised neuronal functions has provided invaluable insights into the physiology of the nervous system. Peripheral chemoreceptors are neurone-like electro-physiologically excitable cells that link the oxygen content of arterial blood to the neuronal control of breathing. In the adult, this oxygen chemosensitivity is exemplified by the Type I cells of the carotid body and recent work has revealed one isoform of the transcription factor HIF, HIF-2α, to have a non-redundant role in the development and function of that organ. Here we show that the activation of HIF-2α, including isolated overexpression alone, is sufficient to induce oxygen chemosensitivity in the otherwise unresponsive adult adrenal medulla. This phenotypic change in the adrenal medulla was associated with retention of extra-adrenal paraganglioma-like tissues that resemble the foetal organ of Zuckerkandl and also manifest oxygen chemosensitivity. Acquisition of chemosensitivity was associated with changes in the adrenal medullary expression of classes of genes that are ordinarily characteristic of the carotid body, including G-protein regulators and atypical subunits of mitochondrial cytochrome oxidase. Overall, the findings suggest that, at least in certain tissues, HIF-2α acts as a phenotypic driver for cells that display oxygen chemosensitivity, thus linking two major oxygen sensing systems.
Maria Prange-Barczynska, Holly A. Jones, Yoichiro Sugimoto, Xiaotong Cheng, Joanna D.C.C Lima, Indrika Ratnayaka, Gillian Douglas, Keith J. Buckler, Peter J. Ratcliffe, Thomas P. Keeley, Tammie Bishop
NKT cells are innate-like T cells, recruited to the skin during viral infection, yet their contributions to long-term immune memory to viruses are unclear. We identified granzyme K, a product made by cytotoxic cells including NKT cells, is linked to induction of Th1-associated antibodies during primary dengue virus (DENV) infection in humans. We examined the role of NKT cells in vivo using DENV-infected mice lacking CD1d-dependent (CD1ddep) NKT cells. In CD1d-KO mice, Th1-polarized immunity and infection resolution were impaired, which was dependent on intrinsic NKT cell production of IFN-γ, since it was restored by adoptive transfer of WT but not IFN-γ-KO NKT cells. Furthermore, NKT cell deficiency triggered immune bias, resulting in higher levels of Th2-associated IgG1 than Th1-associated IgG2a, which failed to protect against a homologous DENV re-challenge and promoted antibody-dependent enhanced disease during secondary heterologous infections. Similarly, Th2-immunity, typified by a higher IgG4:IgG3 ratio, was associated with worsened human disease severity during secondary infections. Thus, CD1ddep NKT cells establish Th1 polarity during the early innate response to DENV, which promotes infection resolution, memory formation and long-term protection from secondary homologous and heterologous infections. These observations illustrate how early innate immune responses during primary infections can influence secondary infection outcomes.
Youngjoo Choi, Wilfried A.A. Saron, Aled O'Neill, Manouri Senanayake, Annelies Wilder-Smith, Abhay P.S. Rathore, Ashley L. St. John
Patients affected by glioma frequently suffer of epileptic discharges, however the causes of brain tumor-related epilepsy (BTRE) are still not completely understood. We investigated the mechanisms underlying BTRE by analyzing the effects of exosomes released by U87 glioma cells and by patient-derived glioma cells. Rat hippocampal neurons incubated for 24 h with these exosomes exhibited increased spontaneous firing, while their resting membrane potential shifted positively by 10-15 mV. Voltage clamp recordings demonstrated that the activation of the Na+ current shifted towards more hyperpolarized voltages by 10-15 mV. To understand the factors inducing hyperexcitability we focused on exosomal cytokines. Western Blot and ELISA assays show that TNF-α is present inside glioma-derived exosomes. Remarkably, incubation with TNF-α fully mimicked the phenotype induced by exosomes, with neurons firing continuously, while their resting membrane potential shifted positively. RT-PCR revealed that both exosomes and TNF-α induced over-expression of the voltage-gated Na channel Nav1.6, a low-threshold Na+ channel responsible for hyperexcitability. When neurons were preincubated with Infliximab, a specific TNF-α inhibitor, the hyperexcitability induced by exosomes and TNF-α were drastically reduced. We propose that Infliximab, an FDA approved drug to treat rheumatoid arthritis, could ameliorate the conditions of glioma patients suffering of BTRE.
Cesar Adolfo Sanchez Trivino, Renza Spelat, Federica Spada, Camilla D'Angelo, Ivana Manini, Irene Giulia Rolle, Tamara Ius, Pietro Parisse, Anna Menini, Daniela Cesselli, Miran Skrap, Fabrizia Cesca, Vincent Torre
Benjamin J. Landis, Benjamin M. Helm, Matthew D. Durbin, Lindsey R. Helvaty, Jeremy L. Herrmann, Michael Johansen, Gabrielle C. Geddes, Stephanie M. Ware
Patients with autism spectrum disorder (ASD) frequently experience sleep disturbance. Genetic mutations in Neuroligin-3 (NLG3) genes are highly correlative with ASD and sleep disturbance. However, the cellular and neural circuit bases of this correlation remain elusive. Here, we find the conditional knockout of NLG3 (NLG3-CKO) in the medial septum (MS) impairs social memory and reduces sleep. NLG3 knockout in MS causes hyperactivity of MS-GABA neurons during social avoidance and wakefulness. Activation of MSGABA neurons induces social memory deficits and sleep loss in C57BL/6 mice. In contrast, inactivation of these neurons ameliorates social memory deficits and sleep loss in NLG3-CKO mice. Sleep deprivation leads to social memory deficits, while social isolation causes sleep loss, both resulting in a reduction of NLG3 expression and an increase in activity of GABAergic neurons in MS from C57BL/6 mice. Furthermore, MS-GABA-innervated CA2 neurons specifically regulate social memory without impacting sleep, whereas MSGABA-innervating neurons in the preoptic area selectively control sleep without affecting social behavior. Together, these findings demonstrate that the hyperactive MS-GABA neurons impair social memory and disrupt sleep resulting from NLG3 knockout in MS, and achieve the modality specificity through their divergent downstream targets.
Haiyan Sun, Yu Shen, Pengtao Ni, Xin Liu, Yan Li, Zhentong Qiu, Jiawen Su, Yihan Wang, Miao Wu, Xiangxi Kong, Jun-Li Cao, Wei Xie, Shuming An
Dan Wang, Ania Baghoomian, Zhengyi Zhang, Ya Cui, Emily C. Whang, Xiang Li, Josue Fraga, Rachel Spellman, Tien S. Dong, We Li, Arpana Gupta, Jihane N. Benhammou, Tamer Sallam
No posts were found with this tag.