Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

In-Press Preview

  • 2,094 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 141
  • 142
  • 143
  • …
  • 209
  • 210
  • Next →
Identification of human long non-coding RNAs associated with nonalcoholic fatty liver disease and metabolic homeostasis
Xiangbo Ruan, … , Hiroshi Suemizu, Haiming Cao
Xiangbo Ruan, … , Hiroshi Suemizu, Haiming Cao
Published October 13, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI136336.
View: Text | PDF
Article has an altmetric score of 5

Identification of human long non-coding RNAs associated with nonalcoholic fatty liver disease and metabolic homeostasis

  • Text
  • PDF
Abstract

A growing number of long non-coding RNAs (lncRNAs) have emerged as vital metabolic regulators. However, most human lncRNAs are non-conserved and highly tissue-specific, vastly limiting our ability to identify human lncRNA metabolic regulators (hLMRs). In this study, we establish a pipeline to identify putative hLMRs that are metabolically sensitive, disease-relevant, and population applicable. We first progressively processed multilevel human transcriptome data to select liver lncRNAs that exhibit highly dynamic expression in the general population, show differential expression in a nonalcoholic fatty liver disease (NAFLD) population, and response to dietary intervention in a small NAFLD cohort. We then experimentally demonstrated the responsiveness of selected hepatic lncRNAs to defined metabolic milieus in a liver-specific humanized mouse model. Furthermore, by extracting a concise list of protein-coding genes that are persistently correlated with lncRNAs in general and NAFLD populations, we predicted the specific function for each hLMR. Using gain- and loss-of-function approaches in humanized mice as well as ectopic expression in conventional mice, we validated the regulatory role of one non-conserved hLMR in cholesterol metabolism by coordinating with an RNA-binding protein, PTBP1, to modulate the transcription of cholesterol synthesis genes. Our work overcome the heterogeneity intrinsic to human data to enable the efficient identification and functional definition of disease-relevant human lncRNAs in metabolic homeostasis.

Authors

Xiangbo Ruan, Ping Li, Yonghe Ma, Chengfei Jiang, Yi Chen, Yu Shi, Nikhil Gupta, Fayaz Seifuddin, Mehdi Pirooznia, Yasuyuki Ohnishi, Nao Yoneda, Megumi Nishiwaki, Gabrijela Dumbovic, John L. Rinn, Yuichiro Higuchi, Kenji Kawai, Hiroshi Suemizu, Haiming Cao

×

Mutant SF3B1 promotes AKT and NF-kB driven mammary tumorigenesis
Bo Liu, … , Omar Abdel-Wahab, Sarat Chandarlapaty
Bo Liu, … , Omar Abdel-Wahab, Sarat Chandarlapaty
Published October 8, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI138315.
View: Text | PDF
Article has an altmetric score of 19

Mutant SF3B1 promotes AKT and NF-kB driven mammary tumorigenesis

  • Text
  • PDF
Abstract

Mutations in the core RNA splicing factor SF3B1 are prevalent in leukemias and uveal melanoma but hotspot SF3B1 mutations are also seen in epithelial malignancies such as breast cancer. Although hotspot mutations in SF3B1 alter hematopoietic differentiation, whether SF3B1 mutations contribute to epithelial cancer development and progression is unknown. Here, we identify that SF3B1 mutations in mammary epithelial and breast cancer cells induce a recurrent pattern of aberrant splicing leading to activation of AKT and NF-kB, enhanced cell migration, and accelerated tumorigenesis. Transcriptomic analysis of human cancer specimens, MMTV-cre Sf3b1K700E/WT mice, and isogenic mutant cell lines identified hundreds of aberrant 3’ splice sites (3’ss) induced by mutant SF3B1. Consistently between mouse and human tumors, mutant SF3B1 promoted aberrant splicing (dependent on aberrant branchpoints as well as pyrimidines downstream of the cryptic 3’ss) and consequent suppression of PPP2R5A and MAP3K7, critical negative regulators of AKT and NF-kB. Coordinate activation of NF-kB and AKT signaling was observed in the knock-in models, leading to accelerated cell migration and tumor development in combination with mutant PIK3CA but also hypersensitizing cells to AKT kinase inhibitors. These data identify hotspot mutations in SF3B1 as an important contributor to breast tumorigenesis and reveal unique vulnerabilities in cancers harboring them.

Authors

Bo Liu, Zhaoqi Liu, Sisi Chen, Michelle Ki, Caroline Erickson, Jorge S. Reis-Filho, Benjamin H. Durham, Qing Chang, Elisa de Stanchina, Yiwei Sun, Raul Rabadan, Omar Abdel-Wahab, Sarat Chandarlapaty

×

Hypothalamic REV-ERB nuclear receptors control diurnal food intake and leptin sensitivity in diet-induced obese mice
Marine Adlanmerini, … , Matthew R. Hayes, Mitchell A. Lazar
Marine Adlanmerini, … , Matthew R. Hayes, Mitchell A. Lazar
Published October 6, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI140424.
View: Text | PDF
Article has an altmetric score of 20

Hypothalamic REV-ERB nuclear receptors control diurnal food intake and leptin sensitivity in diet-induced obese mice

  • Text
  • PDF
Abstract

Obesity occurs when energy expenditure is outweighed by energy intake. Tuberal hypothalamic nuclei, including the arcuate nucleus (ARC), ventromedial nucleus (VMH), and dorsomedial nucleus (DMH), control for food intake and energy expenditure. Here we reported that, contrary to females, male mice lacking circadian nuclear receptors REV-ERB alpha and beta in the tuberal hypothalamus (HDKO) gained excessive weight on an obesogenic high fat diet due to both decreased energy expenditure and increased food intake during the light phase. Moreover, rebound food intake after fasting was markedly increased in HDKO mice. Integrative transcriptomic and cistromic analyses revealed that such disruption in feeding behavior was due to perturbed REV-ERB-dependent leptin signaling in the ARC. Indeed, in vivo leptin sensitivity was impaired in HDKO mice on an obesogenic diet in a diurnal manner. Thus, REV-ERBs play a crucial role in hypothalamic control of food intake and diurnal leptin sensitivity in diet-induced obesity.

Authors

Marine Adlanmerini, Hoang C. B. Nguyen, Brianna M. Krusen, Clare W. Teng, Caroline E. Geisler, Lindsey C. Peed, Bryce J. Carpenter, Matthew R. Hayes, Mitchell A. Lazar

×

Ventromedial hypothalamic primary cilia control energy and skeletal homeostasis
Ji Su Sun, … , Yun-Hee Choi, Ki Woo Kim
Ji Su Sun, … , Yun-Hee Choi, Ki Woo Kim
Published October 6, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI138107.
View: Text | PDF
Article has an altmetric score of 3

Ventromedial hypothalamic primary cilia control energy and skeletal homeostasis

  • Text
  • PDF
Abstract

Dysfunction of primary cilia is related to dyshomeostasis, leading to a wide range of disorders. The ventromedial hypothalamus (VMH) is known to regulate several homeostatic processes, but those modulated specifically by VMH-primary cilia are not yet known. In this study, we identify VMH-primary cilia as an important organelle that maintains energy and skeletal homeostasis by modulating the autonomic nervous system. We established loss-of-function models of primary cilia in the VMH by either targeting IFT88 (IFT88 KOSF-1) using steroidogenic factor 1-Cre (SF1-Cre) or injecting an adeno-associated virus Cre (AAV-Cre) directly into the VMH. Functional impairments of VMH-primary cilia were linked to decreased sympathetic activation and central leptin resistance, which led to marked obesity and bone density accrual. Obesity was caused by hyperphagia, decreased energy expenditure, and blunted brown fat function, as well as associated with insulin and leptin resistance. The effect of bone density accrual was independent from obesity, as it was caused by the decreased sympathetic tone resulting in increased osteoblastic and decreased osteoclastic activities in the IFT88 KOSF-1 and VMH-primary cilia knock-down mice. Overall, our current study identifies VMH-primary cilia as a critical hypothalamic organelle that maintains energy and skeletal homeostasis.

Authors

Ji Su Sun, Dong Joo Yang, Ann W. Kinyua, Seul Gi Yoon, Je Kyung Seong, Juwon Kim, Seok Jun Moon, Dong Min Shin, Yun-Hee Choi, Ki Woo Kim

×

Promoting the success of women and minority physician-scientists in academic medicine: a dean’s perspective
Nancy J. Brown
Nancy J. Brown
Published October 6, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI144526.
View: Text | PDF
Article has an altmetric score of 28

Promoting the success of women and minority physician-scientists in academic medicine: a dean’s perspective

  • Text
  • PDF
Abstract

Dr. Nancy Brown, Dean of the Yale School of Medicine, shares her perspective on the challenges facing women and minority faculty members and trainees in academic medicine and provides a reflection on how leaders in academic medicine can promote diversity, equity, and inclusion to enhance their success.

Authors

Nancy J. Brown

×

COVID-19 and myeloid cells: complex interplay correlates with lung severity
Franco R. D'Alessio, Nicola M. Heller
Franco R. D'Alessio, Nicola M. Heller
Published October 6, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI143361.
View: Text | PDF
Article has an altmetric score of 5

COVID-19 and myeloid cells: complex interplay correlates with lung severity

  • Text
  • PDF
Abstract

COVID-19 spans and wide range of symptoms, sometimes with profound immune system involvement. How immune cell subsets change during the disease course and with disease severity needs further study. While myeloid cells have been shown to initiate and maintain responses to pneumonia and lung inflammation, often playing a role in resolution, their involvement with COVID-19 remains unknown. In this issue of the JCI, Sánchez-Cerrillo and Pedro-Landete et al. investigated dendritic cells and monocytes from blood and bronchial secretions of patients with varying COVID-19 severity and with healthy controls. The authors conclude that circulating monocytes and DCs migrate from the blood into the inflamed lungs. While sampling differences in sex, collection timing, bacteria/fungal infection, and corticosteroid treatment limit interpretation, we believe that reprograming monocyte or macrophages by targeting immunometabolism, epigenetics, or the cytokine milieu holds promise in resolving lung-inflammation associated with COVID-19.

Authors

Franco R. D'Alessio, Nicola M. Heller

×

Transcriptome-directed analysis for Mendelian disease diagnosis overcomes limitations of conventional genomic testing
David R. Murdock, … , Neil A. Hanchard, Brendan Lee
David R. Murdock, … , Neil A. Hanchard, Brendan Lee
Published October 1, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI141500.
View: Text | PDF
Article has an altmetric score of 70

Transcriptome-directed analysis for Mendelian disease diagnosis overcomes limitations of conventional genomic testing

  • Text
  • PDF
Abstract

BACKGROUND. Transcriptome sequencing (RNA-seq) improves diagnostic rates in individuals with suspected Mendelian conditions to varying degrees, primarily by directing the prioritization of candidate DNA variants identified on exome or genome sequencing (ES/GS). Here we implemented an RNA-seq guided method to diagnose individuals across a wide range of ages and clinical phenotypes. METHODS. One hundred fifteen undiagnosed adult and pediatric patients with diverse phenotypes and 67 family members (182 total individuals) underwent RNA-seq from whole blood and fibroblasts at the Baylor College of Medicine (BCM) Undiagnosed Diseases Network (UDN) clinical site from 2014-2020. We implemented a workflow to detect outliers in gene expression and splicing for cases that remained undiagnosed despite standard genomic and transcriptomic analysis. RESULTS. The transcriptome-directed approach resulted in a diagnostic rate of 12% across the entire cohort, or 17% after excluding cases solved on ES/GS alone. Newly diagnosed conditions included Koolen-de Vries syndrome (KANSL1), Renpenning syndrome (PQBP1), TBCK-associated encephalopathy, NSD2- and CLTC-related intellectual disability, and others, all with negative conventional genomic testing, including ES and chromosomal microarray (CMA). Fibroblasts exhibited higher and more consistent expression of clinically relevant genes than whole blood. In solved cases with RNA-seq from both tissues, the causative defect was missed in blood in half the cases but none from fibroblasts. CONCLUSION. For our cohort of undiagnosed individuals with suspected Mendelian conditions, transcriptome-directed genomic analysis facilitated diagnoses, primarily through the identification of variants missed on ES and CMA.

Authors

David R. Murdock, Hongzheng Dai, Lindsay C. Burrage, Jill A. Rosenfeld, Shamika Ketkar, Michaela F. Müller, Vicente A. Yépez, Julien Gagneur, Pengfei Liu, Shan Chen, Mahim Jain, Gladys Zapata, Carlos A. Bacino, Hsiao-Tuan Chao, Paolo Moretti, William J. Craigen, Neil A. Hanchard, Brendan Lee

×

Protein tyrosine phosphatase non-receptor type 2 controls colorectal cancer development
Egle Katkeviciute, … , Michael Scharl, Marianne R. Spalinger
Egle Katkeviciute, … , Michael Scharl, Marianne R. Spalinger
Published October 1, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI140281.
View: Text | PDF
Article has an altmetric score of 4

Protein tyrosine phosphatase non-receptor type 2 controls colorectal cancer development

  • Text
  • PDF
Abstract

Protein tyrosine phosphatase non-receptor type 2 (PTPN2) recently emerged as a promising cancer immunotherapy target. We set to investigate the functional role of PTPN2 in the pathogenesis of human colorectal carcinoma (CRC) as its role in immune-silent solid tumors is poorly understood. We demonstrate that in human CRC, increased PTPN2 expression and activity correlated with disease progression and decreased immune responses in tumor tissues. Particularly, stage II and III tumors displayed enhanced PTPN2 protein expression in tumor-infiltrating T-cells and increased PTPN2 levels negatively correlated with PD1, CTLA4, STAT1 and granzyme A. In vivo, T-cell and dendritic cell-specific PTPN2 deletion reduced tumor burden in several CRC models by promoting CD44+ effector/memory T-cells, as well as CD8+ T-cell infiltration and cytotoxicity into the tumor. In direct relevance to CRC treatment, T-cell-specific PTPN2 deletion potentiated anti-PD-1 efficacy and induced anti-tumor memory formation upon tumor re-challenge in vivo. Our data suggest a role for PTPN2 in suppressing anti-tumor immunity and promoting tumor development in CRC patients. Our in vivo results uncover PTPN2 as a key player in controlling immunogenicity of CRC, with the strong potential to be exploited to promote cancer immunotherapy.

Authors

Egle Katkeviciute, Larissa Hering, Ana Montalban-Arques, Philipp Busenhart, Marlene Schwarzfischer, Roberto Manzini, Javier Conde, Kirstin Atrott, Silvia Lang, Gerhard Rogler, Elisabeth Naschberger, Vera S. Schellerer, Michael Stürzl, Andreas Rickenbacher, Matthias Turina, Achim Weber, Sebastian Leibl, Gabriel E. Leventhal, Mitchell Levesque, Onur Boyman, Michael Scharl, Marianne R. Spalinger

×

Recent endemic coronavirus infection is associated with less severe COVID-19
Manish Sagar, … , Laura White, Joseph P. Mizgerd
Manish Sagar, … , Laura White, Joseph P. Mizgerd
Published September 30, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI143380.
View: Text | PDF
Article has an altmetric score of 1376

Recent endemic coronavirus infection is associated with less severe COVID-19

  • Text
  • PDF
Abstract

Four different endemic coronaviruses (eCoVs) are etiologic agents for the seasonal “common cold,” and these eCoVs share extensive sequence homology with human severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Here, we show that individuals with as compared to without a relatively recent documented eCoV were tested at greater frequency for respiratory infections but had similar rate of SARS-CoV-2 acquisition. Importantly, the patients with a previously detected eCoV had less severe coronavirus disease-2019 (COVID-19) illness. Our observations suggest that pre-existing immune responses against endemic human coronaviruses can mitigate disease manifestations from SARS-CoV-2 infection.

Authors

Manish Sagar, Katherine Reifler, Michael Rossi, Nancy S. Miller, Pranay Sinha, Laura White, Joseph P. Mizgerd

×

COVID-19 survival associates with the immunoglobulin response to the SARS-CoV-2 spike Receptor Binding Domain
Massimiliano Secchi, … , Lorenzo Piemonti, Vito Lampasona
Massimiliano Secchi, … , Lorenzo Piemonti, Vito Lampasona
Published September 29, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI142804.
View: Text | PDF
Article has an altmetric score of 312

COVID-19 survival associates with the immunoglobulin response to the SARS-CoV-2 spike Receptor Binding Domain

  • Text
  • PDF
Abstract

BACKGROUND. Serological assays are of critical importance to investigate correlates of response and protection in COVID-19, to define previous exposure to SARS-CoV-2 in populations and to verify the development of an adaptive immune response in infected individuals. METHODS. We studied 509 confirmed COVID-19 patients from the San Raffaele Hospital of Milan and 480 pre-pandemic organ donor sera collected in 2010-2012. Using fluid-phase luciferase immune precipitation (LIPS) assays, we characterized IgG, IgM, IgA antibodies to the spike Receptor Binding Domain (RBD), S1+S2, nucleocapsid, and ORF6 to 10 of SARS-CoV-2, to the HCoV-OC43 and HCoV-HKU1 betacoronaviruses spike S2, and the H1N1Ca2009 flu virus hemagglutinin. Sequential samples at 1 and 3 months post-hospital discharge were also tested in 95 patients for SARS-CoV-2 RBD antibodies. RESULTS. Antibodies developed rapidly against multiple SARS-CoV-2 antigens in 95% of patients by 4 weeks post-symptoms onset and IgG to the RBD increased until the 3rd month of follow-up. We observed a major synchronous expansion of antibodies to the HCoV-OC43 and HCoV-HKU1 spike S2. A likely co-infection with influenza was neither linked to a more severe presentation of the disease nor to a worse outcome. Of the measured antibody responses positivity for IgG against the SARS-CoV-2 spike RBD was predictive of survival. CONCLUSIONS. The measurement of antibodies to selected epitopes of SARS-CoV-2 antigens can offer a more accurate assessment of the humoral response in patients and its impact on survival. The presence of partially cross-reactive antibodies with other betacoronoviruses is likely to impact on serological assay specificity and interpretation.

Authors

Massimiliano Secchi, Elena Bazzigaluppi, Cristina Brigatti, Ilaria Marzinotto, Cristina Tresoldi, Patrizia Rovere-Querini, Andrea Poli, Antonella Castagna, Gabriella Scarlatti, Alberto Zangrillo, Fabio Ciceri, Lorenzo Piemonti, Vito Lampasona

×
  • ← Previous
  • 1
  • 2
  • …
  • 141
  • 142
  • 143
  • …
  • 209
  • 210
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Posted by 8 X users
39 readers on Mendeley
See more details
Posted by 10 X users
38 readers on Mendeley
See more details
Posted by 29 X users
On 1 Facebook pages
Referenced in 1 Wikipedia pages
73 readers on Mendeley
See more details
Posted by 8 X users
On 1 Facebook pages
72 readers on Mendeley
See more details
Posted by 31 X users
On 1 Facebook pages
61 readers on Mendeley
See more details
Picked up by 54 news outlets
Blogged by 8
Referenced in 1 policy sources
Posted by 2309 X users
On 9 Facebook pages
Reddited by 2
Highlighted by 1 platforms
230 readers on Mendeley
See more details
Picked up by 5 news outlets
Blogged by 2
Posted by 42 X users
Highlighted by 1 platforms
216 readers on Mendeley
See more details
Posted by 49 X users
On 1 Facebook pages
18 readers on Mendeley
See more details
Picked up by 13 news outlets
Blogged by 1
Posted by 277 X users
199 readers on Mendeley
See more details
Posted by 4 X users
On 1 Facebook pages
50 readers on Mendeley
See more details