Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Research

  • 1,544 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • 3
  • …
  • 154
  • 155
  • Next →
B cell deficiency induces cytotoxic memory CD8+ T cells during influenza-associated bacterial pneumonia
Leigh M. Miller, … , Abhigya Gupta, John F. Alcorn
Leigh M. Miller, … , Abhigya Gupta, John F. Alcorn
Published June 10, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI188342.
View: Text | PDF

B cell deficiency induces cytotoxic memory CD8+ T cells during influenza-associated bacterial pneumonia

  • Text
  • PDF
Abstract

Influenza-associated bacterial super-infections in the lung lead to increased morbidity and mortality. Nearly all people have pre-existing memory to influenza virus, which can protect against subsequent infection in the lung. This study explored the role B cells play in protection against bacterial (Staphylococcus aureus or Klebsiella pneumoniae) super-infection with previous heterotypic influenza memory. B cell deficiency resulted in an increased inflammatory lung environment and lung tissue injury during super-infection. Loss of B cells increased populations of memory CD8+ T cells in the lung and these CD8+ T cells were transcriptionally and functionally distinct from WT mice. Use of antibody-deficient mouse models showed that this phenotype was specifically due to loss of antibody production from B cells. Passive immunization with influenza-antibody serum in B cell deficient mice rescued the CD8+ T cell phenotype. CD8+ T cell depletion and lethal super-infection challenge experiments showed that the cytotoxic memory CD8+ T cells from B cell deficient mice protect against super-infection bacterial burden and mortality. These findings provide insight into the importance of B cells for regulating immune responses against infection.

Authors

Leigh M. Miller, Alexis M. Duray, Ellyse M. Cipolla, Flavia Rago, Brooke P. Dresden, Kristen L. Parenteau, Abhigya Gupta, John F. Alcorn

×

Patterns of intra- and inter-tumor phenotypic heterogeneity in lethal prostate cancer
Martine P. Roudier, … , Peter S. Nelson, Michael C. Haffner
Martine P. Roudier, … , Peter S. Nelson, Michael C. Haffner
Published June 10, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI186599.
View: Text | PDF
Article has an altmetric score of 2

Patterns of intra- and inter-tumor phenotypic heterogeneity in lethal prostate cancer

  • Text
  • PDF
Abstract

Metastatic prostate cancer (mPC) is a clinically and molecularly heterogeneous disease. While there is increasing recognition of diverse tumor phenotypes across patients, less is known about the molecular and phenotypic heterogeneity present within an individual. In this study, we aimed to define the patterns, extent, and consequences of inter- and intra-tumoral heterogeneity in lethal prostate cancer. By combining and integrating in situ tissue-based and sequencing approaches, we analyzed over 630 tumor samples from 52 mPC patients. Our efforts revealed phenotypic heterogeneity at the patient, metastasis, and cellular levels. We observed that intra-patient, inter-tumoral molecular subtype heterogeneity was common in mPC and showed associations with genomic and clinical features. Additionally, cellular proliferation rates varied within a given patient across molecular subtypes and anatomic sites. Single-cell sequencing studies revealed features of morphologically and molecularly divergent tumor cell populations within a single metastatic site. These data provide a deeper insight into the complex patterns of tumoral heterogeneity in mPC with implications for clinical management and the future development of diagnostic and therapeutic approaches.

Authors

Martine P. Roudier, Roman Gulati, Erolcan Sayar, Radhika A. Patel, Micah Tratt, Helen M. Richards, Paloma Cejas, Miguel Munoz Gomez, Xintao Qiu, Yingtian Xie, Brian Hanratty, Samir Zaidi, Jimmy L. Zhao, Mohamed Adil, Chitvan Mittal, Yibai Zhao, Ruth Dumpit, Ilsa Coleman, Jin-Yih Low, Thomas Persse, Patricia C. Galipeau, John K. Lee, Maria Tretiakova, Meagan Chambers, Funda Vakar-Lopez, Lawrence D. True, Marie Perrone, Hung-Ming Lam, Lori A. Kollath, Chien-Kuang C. Ding, Stephanie Harmon, Heather H. Cheng, Evan Y. Yu, Robert B. Montgomery, Jessica E. Hawley, Daniel W. Lin, Eva Corey, Michael T. Schweizer, Manu Setty, Gavin Ha, Charles L. Sawyers, Colm Morrissey, Henry W. Long, Peter S. Nelson, Michael C. Haffner

×

The macrophage-intrinsic MDA5-IRF5 axis drives HIV-1 intron-containing RNA-induced inflammatory responses
Sita Ramaswamy, … , Manish Sagar, Suryaram Gummuluru
Sita Ramaswamy, … , Manish Sagar, Suryaram Gummuluru
Published June 10, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI187663.
View: Text | PDF

The macrophage-intrinsic MDA5-IRF5 axis drives HIV-1 intron-containing RNA-induced inflammatory responses

  • Text
  • PDF
Abstract

Despite effective antiretroviral therapy (ART), transcriptionally competent HIV-1 reservoirs persist and contribute to persistent immune activation in people living with HIV (PWH). HIV-1-infected macrophages are important mediators of chronic innate immune activation, though mechanisms remain unclear. We previously reported that nuclear export and cytoplasmic expression of HIV-1 intron-containing RNA (icRNA) activates mitochondrial antiviral signaling protein (MAVS)-mediated type I interferon (IFN) responses in macrophages. In this study, we demonstrate an essential role of melanoma differentiation-associated protein 5 (MDA5) in sensing HIV-1 icRNA and promoting MAVS-dependent IRF5 activation in macrophages. Suppression of MDA5, but not RIG-I expression nor disruption of endosomal TLR pathway, abrogated HIV-1 icRNA-induced type I IFN responses and IP-10 expression in macrophages. Furthermore, induction of IP-10 in macrophages upon HIV-1 icRNA sensing by MDA5 was dependent on IRF5. Additionally, monocytes and MDMs from older (>50 years) individuals exhibit constitutively higher levels of IRF5 expression compared to younger (<35 years) individuals, and HIV-1 icRNA induced IP-10 expression was significantly enhanced in older macrophages, which was attenuated upon ablation of IRF5 expression suggesting that IRF5 functions as a major mediator of pro-inflammatory response downstream of MDA5-dependent HIV-1 icRNA sensing, dysregulation of which might contribute to chronic inflammation in older PWH.

Authors

Sita Ramaswamy, Hisashi Akiyama, Jacob Berrigan, Andrés A. Quiñones-Molina, Alex J. Olson, Yunhan Chen, YanMei Liang, Andrew J. Henderson, Archana Asundi, Manish Sagar, Suryaram Gummuluru

×

Disruption of KLHL37-N-Myc complex restores N-Myc degradation and arrests neuroblastoma growth in mouse models
Senfeng Xiang, … , Qiaojun He, Meidan Ying
Senfeng Xiang, … , Qiaojun He, Meidan Ying
Published June 10, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI176655.
View: Text | PDF

Disruption of KLHL37-N-Myc complex restores N-Myc degradation and arrests neuroblastoma growth in mouse models

  • Text
  • PDF
Abstract

MYCN amplification accounts for the most common genetic aberration in neuroblastoma and strongly predicts the aggressive progression and poor clinical prognosis. However, clinically effective therapies that directly target N-Myc activity are limited. N-Myc is a transcription factor, and its stability are tightly controlled by ubiquitination-dependent proteasomal degradation. Here, we discovered that Kelch-like protein 37 (KLHL37) played a crucial role in enhancing the protein stability of N-Myc in neuroblastoma. KLHL37 directly interacted with N-Myc to disrupt the N-Myc/FBXW7 interaction, thereby stabilizing N-Myc and enabling tumor progression. Suppressing KLHL37 effectively induced the degradation of N-Myc and exhibited a profound inhibitory effect on the growth of MYCN-amplified neuroblastoma. Notably, we identified RTA-408 as an inhibitor of KLHL37 to disrupt KLHL37-N-Myc complex, promoting the degradation of N-Myc and suppressing neuroblastoma in vivo and in vitro. Moreover, we elucidated the therapeutic potential of RTA-408 for neuroblastoma by utilizing the PDC and PDX tumor models. RTA408's anti-tumor effects may not be exclusively via KLHL37, and specific KLHL37 inhibitors are expected to be developed in the future. These findings not only uncover the biological function of KLHL37 in regulating N-Myc stability, but also indicate that KLHL37 inhibition is a promising therapeutic regimen for neuroblastoma, especially in MYCN-amplified patients.

Authors

Senfeng Xiang, Pengfei Chen, Xiaoxian Shi, Hanqi Cai, Zihan Shen, Luyang Liu, Aixiao Xu, Jianhua Zhang, Xingya Zhang, Shaowei Bing, Jinhu Wang, Xuejing Shao, Ji Cao, Bo Yang, Qiaojun He, Meidan Ying

×

Diet-induced obesity promotes endothelial cell desensitization to VEGF-A and permanent islet vessel dysfunction in mice
Yan Xiong, … , Erwin Ilegems, Per-Olof Berggren
Yan Xiong, … , Erwin Ilegems, Per-Olof Berggren
Published June 9, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI177601.
View: Text | PDF
Article has an altmetric score of 31

Diet-induced obesity promotes endothelial cell desensitization to VEGF-A and permanent islet vessel dysfunction in mice

  • Text
  • PDF
Abstract

Pancreatic islet microvasculature is essential for optimal islet function and glucose homeostasis. However, islet vessel pathogenesis in obesity and its role in the manifestation of metabolic disorders remain understudied. Here, we depict the time-resolved decline of intra-islet endothelial cell responsiveness to vascular endothelial cell growth factor A (VEGF-A) and islet vessel function in a mouse model of diet-induced obesity. Longitudinal imaging of sentinel islets transplanted into mouse eyes revealed substantial vascular remodeling and diminished VEGF-A response in islet endothelial cells after 12 weeks of western diet (WD) feeding. This led to islet vessel barrier dysfunction and hemodynamic dysregulation, delaying transportation of secreted insulin into the blood. Notably, islet vessels exhibited a metabolic memory of previous WD feeding. Neither VEGF-A sensitivity nor the other vascular alterations was fully restored by control diet (CD) refeeding, resulting in modest yet significant impairment in glucose clearance despite normalized insulin sensitivity. Mechanistic analysis implicated hyperactivation of atypical protein kinase C (aPKC) under both WD and recovery conditions, which inhibited VEGF receptor 2 (VEGFR2) internalization and blunted VEGF-A triggered signal transduction in endothelial cells. In summary, prolonged WD feeding causes irreversible islet endothelial cell desensitization to VEGF-A and islet vessel dysfunction, directly undermining glucose homeostasis.

Authors

Yan Xiong, Andrea Dicker, Montse Visa, Erwin Ilegems, Per-Olof Berggren

×

CAR-T cells targeting CD155 reduce tumor burden in preclinical models of leukemia and solid tumors
Tianchen Xiong, … , Michael A. Caligiuri, Jianhua Yu
Tianchen Xiong, … , Michael A. Caligiuri, Jianhua Yu
Published June 6, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI189920.
View: Text | PDF
Article has an altmetric score of 1

CAR-T cells targeting CD155 reduce tumor burden in preclinical models of leukemia and solid tumors

  • Text
  • PDF
Abstract

CAR-T cells are a powerful yet expensive tool in cancer immunotherapy. While their use in targeting hematological malignancies is well-established, using a single CAR-T cell therapy to treat both hematological and solid tumors, which can reduce cost, remains largely unexplored. In this study, we identified CD155, an adhesion molecule that is upregulated during tumor progression, as a target for CAR-T cell therapy in both leukemia and solid tumors. We engineered CAR-T cells using human and mouse anti-CD155 antibodies generated from a Berkeley Lights' Beacon platform. These CAR-T cells demonstrated potent anti-tumor activity, significantly reducing tumor burden in preclinical models of acute myeloid leukemia (AML), non-small cell lung cancer (NSCLC), and pancreatic cancer. To reduce potential allogeneic rejection, we generated CAR-T cells using humanized anti-CD155 antibody sequences that retained efficacy. Additionally, murine CAR-T cells targeting mouse CD155 exhibited limited toxic side effects in immunocompetent mice, highlighting the favorable safety profile of this therapy. These findings suggest that CD155 can be targeted by CD155 CAR-T cells safely and effectively, representing an innovative cellular therapeutic strategy that has the potential to expand its scope across both AML and multiple solid tumors, thereby lowering the cost of cellular immunotherapy, especially as allogenic, universal and off-the-shelf CAR-T cell therapies advance to the clinic.

Authors

Tianchen Xiong, Ge Wang, Peng Yu, Zhenlong Li, Debao Li, Jianying Zhang, Song Lu, Ruiqi Yang, Xiaolong Lian, Jianhong Mi, Rui Ma, Zhiyao Li, Guido Marcucci, Tingting Zhao, Michael A. Caligiuri, Jianhua Yu

×

Panose prevents acute-on-chronic liver failure by reducing bacterial infection in mice
Jiaxin Li, … , Jinjun Chen, Peng Chen
Jiaxin Li, … , Jinjun Chen, Peng Chen
Published June 6, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI184653.
View: Text | PDF

Panose prevents acute-on-chronic liver failure by reducing bacterial infection in mice

  • Text
  • PDF
Abstract

Acute-on-chronic liver failure (ACLF) is a leading cause of global liver-related mortality. Bacterial infection, especially in patients with decompensated cirrhosis (DC), commonly triggers ACLF and is difficult to treat with antibiotics. Therefore, finding alternative strategies for preventing and managing bacterial infection is an urgent priority. Here, we observed that infected DC patients and ACLF mice exhibited lower fecal panose levels than uninfected controls. Megamonas funiformis (M. funiformis), with 4α-glucanosyltransferase (4αGT) as a key enzyme for panose production, was identified as a potential panose producer. Animal experiments demonstrated that panose efficiently reduced liver injury and extended survival in ACLF mice by mitigating bacterial infection. Further results revealed that panose enhanced resistance to bacterial infection by inhibiting oxidative stress-induced gut barrier disruption, thereby limiting bacterial dissemination. Mechanistically, panose interacted with the solute carrier family 7 member 11 (SLC7A11, also known as xCT) protein to boost antioxidant glutathione (GSH) levels in intestinal epithelial cells. These findings highlight panose's potential in preventing bacterial infection, offering a valuable insight into mitigating ACLF progression.

Authors

Jiaxin Li, Shihao Xie, Meiling Chen, Changze Hong, Yuqi Chen, Fengyuan Lyu, Niexin Tang, Tianqi Chen, Lingyan Zhao, Weihao Zou, Hongjuan Peng, Jingna Bao, Peng Gu, Bernd Schnabl, Jinjun Chen, Peng Chen

×

CXCL10 secreted by SPRY1-deficient epidermal keratinocytes fuels joint inflammation in psoriatic arthritis via CD14 signaling
Fan Xu, … , Yong Yang, Xiao-Yong Man
Fan Xu, … , Yong Yang, Xiao-Yong Man
Published June 5, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI186135.
View: Text | PDF
Article has an altmetric score of 2

CXCL10 secreted by SPRY1-deficient epidermal keratinocytes fuels joint inflammation in psoriatic arthritis via CD14 signaling

  • Text
  • PDF
Abstract

Psoriatic arthritis (PsA) is a multifaceted chronic inflammatory disease affecting the skin, joints, and entheses, and is a major comorbidity of psoriasis. Most patients with PsA present with psoriasis before articular involvement, however, the molecular and cellular mechanisms underlying the link between cutaneous psoriasis and PsA are poorly understood. Here, we found that epidermal-specific SPRY1-deficient mice spontaneously developed PsA-like inflammation involving both the skin and joints. Excessive CXCL10 was secreted by SPRY1-deficient epidermal keratinocytes through enhanced activation of JAK1/2-STAT1 signaling, and CXCL10 blockade attenuated PsA-like inflammation. Of note, CXCL10 was found to bind to CD14, but not CXCR3, to promote the TNF𝜶 production of periarticular CD14hi macrophages via PI3K/AKT and NF-κB signaling pathways. Collectively, this study reveals that SPRY1 deficiency in the epidermis is sufficient to drive both skin and joint inflammation, and identifies keratinocyte-derived CXCL10 and periarticular CD14hi macrophages as critical links in the skin-joint crosstalk leading to PsA. This keratinocyte SPRY1-CXCL10-periarticular CD14hi macrophages-TNFα axis provides valuable insights into the mechanisms underlying the transition from psoriasis to PsA and suggests potential therapeutic targets for preventing this progression.

Authors

Fan Xu, Ying-Zhe Cui, Xing-Yu Yang, Yu-Xin Zheng, Xi-Bei Chen, Hao Zhou, Zhao-Yuan Wang, Yuan Zhou, Yi Lu, Ying-Ying Li, Li-Ran Ye, Ni-Chang Fu, Si-Qi Chen, Xue-Yan Chen, Min Zheng, Yong Yang, Xiao-Yong Man

×

The microRNA miR-30a blocks adipose tissue fibrosis accumulation in obesity
Pradip K. Saha, … , Samuel Klein, Sean M. Hartig
Pradip K. Saha, … , Samuel Klein, Sean M. Hartig
Published June 5, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI175566.
View: Text | PDF
Article has an altmetric score of 4

The microRNA miR-30a blocks adipose tissue fibrosis accumulation in obesity

  • Text
  • PDF
Abstract

White adipose tissue (WAT) fibrosis occurring in obesity contributes to the inflammatory and metabolic co-morbidities of insulin resistance and type 2 diabetes, yet the mechanisms involved remain poorly understood. Here, we report a role for the broadly conserved microRNA miR-30a as a regulator of WAT fibrosis and systemic glucose metabolism. Mice modified to express miR-30a at elevated levels in adipose tissues maintain insulin sensitivity coupled with reduced fatty liver disease when fed high fat diet. These effects were attributable to cell-autonomous functions of miR-30a that potently increase expression of adipocyte-specific genes. Proteomic screening revealed miR-30a limits pro-fibrotic programs in subcutaneous WAT, at least in part, by repressing PAI-1, a dominant regulator of fibrinolysis and biomarker of insulin resistance. Conversely, mouse adipocytes lacking miR-30a exhibited greater expression of fibrosis markers with disrupted cellular metabolism. Lastly, miR-30a expression negatively correlates with PAI-1 levels in subcutaneous WAT from people with obesity, further supporting an anti-fibrotic role for miR-30a. Together, these findings uncover miR-30a as a critical regulator of adipose tissue fibrosis that predicts metabolically healthy obesity in people and mice.

Authors

Pradip K. Saha, Robert Sharp, Aaron R. Cox, Rabie Habib, Michael J. Bolt, Jessica B. Felix, Claudia E. Ramirez Bustamante, Xin Li, Sung Yun Jung, Kang Ho Kim, Kai Sun, Huaizhu Wu, Samuel Klein, Sean M. Hartig

×

FGFR3-induced Y158 PARP1 phosphorylation promotes PARP-inhibitor resistance via BRG1/MRE11-mediated DNA repair in breast cancer models
Mei-Kuang Chen, … , Dihua Yu, Mien-Chie Hung
Mei-Kuang Chen, … , Dihua Yu, Mien-Chie Hung
Published June 3, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI173757.
View: Text | PDF

FGFR3-induced Y158 PARP1 phosphorylation promotes PARP-inhibitor resistance via BRG1/MRE11-mediated DNA repair in breast cancer models

  • Text
  • PDF
Abstract

Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) are used to treat BRCA-mutated (BRCAm) cancer patients; however, resistance has been observed. Therefore, biomarkers to indicate PARPi resistance and combination therapy to overcome that are urgently needed. We identified a high prevalence of activated FGF receptor 3 (FGFR3) in BRCAm triple-negative breast cancer (TNBC) cells with intrinsic and acquired PARPi resistance. FGFR3 phosphorylated PARP1 at tyrosine 158 (Y158) to recruit BRG1 and prolong chromatin-loaded MRE11, thus promoting homologous recombination (HR) to enhance PARPi resistance. FGFR inhibition prolonged PARP trapping and synergized with PARPi in vitro and in vivo. High-level PARP1 Y158 phosphorylation (p-Y158) positively correlated with PARPi resistance in TNBC patient-derived xenograft models, and in PARPi-resistant TNBC patient tumors. These findings reveal that PARP1 p-Y158 facilitates BRG1-mediated HR to resolve the PARP-DNA complex, and PARP1 p-Y158 may indicate PARPi resistance that can be relieved by combining FGFR inhibitors (FGFRi) with PARPi. In summary, we show that FGFRi restores PARP trapping and PARPi antitumor efficacy in PARPi-resistant breast cancer by decreasing HR through the PARP1 p-Y158/BRG1/MRE11 axis, suggesting that PARP1 p-Y158 is a biomarker for PARPi resistance that can be overcome by combining FGFRi with PARPi.

Authors

Mei-Kuang Chen, Hirohito Yamaguchi, Yuan Gao, Weiya Xia, Jeffrey T. Chang, Yu-Chun Hsiao, Tewodros W. Shegute, Zong-Shin Lin, Chen-Shiou Wu, Yu-Han Wang, Jennifer K. Litton, Qingqing Ding, Yongkun Wei, Yu-Yi Chu, Funda Meric-Bernstam, Helen Piwnica-Worms, Banu Arun, Jordi Rodon Ahnert, Jinsong Liu, Jun Yao, Wei-Chao Chang, Hung-Ling Wang, Coya Tapia, Constance T. Albarracin, Khandan Keyomarsi, Shao-Chun Wang, Ying-Nai Wang, Gabriel N. Hortobagyi, Chunru Lin, Liuqing Yang, Dihua Yu, Mien-Chie Hung

×
  • ← Previous
  • 1
  • 2
  • 3
  • …
  • 154
  • 155
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Posted by 1 X users
See more details
Posted by 1 X users
Referenced by 2 Bluesky users
See more details
Posted by 4 X users
See more details
Posted by 5 X users
Referenced by 4 Bluesky users
See more details
Picked up by 3 news outlets
Blogged by 1
Posted by 1 X users
See more details