Induction of TLR2 activation depends on its association with adapter protein MyD88. We have found that levels of TLR2 and MyD88 are elevated in the hippocampus and cortex of Alzheimer’s disease (AD) patients and 5XFAD mouse model of AD. Since there is no specific inhibitor of TLR2, to target induced TLR2 from therapeutic angle, we engineered a peptide corresponding to the TLR2-interacting domain of MyD88 (TIDM) that binds to the BB loop of only TLR2, but not other TLRs. Interestingly, wild type (wt) TIDM peptide inhibited microglial activation induced by fibrillar Aβ1-42 and lipoteichoic acid, but not 1-methyl-4-phenylpyridinium, double-stranded RNA, bacterial lipopolysaccharide, flagellin, and CpG DNA. After intranasal administration, wtTIDM peptide reached the hippocampus, reduced hippocampal glial activation, lowered Aβ burden, attenuated neuronal apoptosis, and improved memory and learning in 5XFAD mice. However, wtTIDM peptide was not effective in 5XFAD mice lacking TLR2. In addition to 5XFAD mice, wtTIDM peptide also suppressed the disease process in mice with experimental allergic encephalomyelitis and collagen-induced arthritis. Therefore, selective targeting of activated status of one component of the innate immune system by wtTIDM peptide may be beneficial in AD as well as other disorders in which TLR2-MyD88 signaling plays a role in disease pathogenesis.
Suresh B. Rangasamy, Malabendu Jana, Avik Roy, Grant T. Corbett, Madhuchhanda Kundu, Sujyoti Chandra, Susanta Mondal, Sridevi Dasarathi, Elliott J. Mufson, Rama K. Mishra, Chi-Hao Luan, David A. Bennett, Kalipada Pahan
Anaplastic thyroid carcinomas (ATC) have a high prevalence of BRAF and TP53 mutations. A trial of vemurafenib in non-melanoma BRAFV600E-mutant cancers showed significant, although short-lived, responses in ATCs, indicating that these virulent tumors remain addicted to BRAF despite their high mutation burden. To explore the mechanisms mediating acquired resistance to BRAF blockade we generated mice with thyroid-specific deletion of p53 and dox-dependent expression of BRAFV600E, 50% of which developed ATCs after dox treatment. Upon dox withdrawal there was complete regression in all mice, although recurrences were later detected in 85% of animals. The relapsed tumors had elevated MAPK transcriptional output, and retained responses to the MEK/RAF inhibitor CH5126766 in vivo and in vitro. Whole exome sequencing identified recurrent focal amplifications of chromosome 6, with a minimal region of overlap that included Met. Met-amplified recurrences overexpressed the receptor as well as its ligand Hgf. Growth, signaling and viability of Met-amplified tumor cells were suppressed in vitro and in vivo by the Met kinase inhibitors PF-04217903 and crizotinib, whereas primary ATCs and Met-diploid relapses were resistant. Hence, recurrences are the rule after BRAF suppression in murine ATCs, most commonly due to activation of HGF/MET signaling, which generates exquisite dependency to MET kinase inhibitors.
Jeffrey A. Knauf, Kathleen A. Luckett, Kuen-Yuan Chen, Francesca Voza, Nicholas D. Socci, Ronald Ghossein, James A. Fagin
No posts were found with this tag.