Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Research

  • 1,560 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 141
  • 142
  • 143
  • …
  • 155
  • 156
  • Next →
Bystander responses impact accurate detection of murine and human antigen-specific CD8 T cells
Matthew D. Martin, … , Robert A. Seder, Vladimir P. Badovinac
Matthew D. Martin, … , Robert A. Seder, Vladimir P. Badovinac
Published June 20, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI124443.
View: Text | PDF
Article has an altmetric score of 6

Bystander responses impact accurate detection of murine and human antigen-specific CD8 T cells

  • Text
  • PDF
Abstract

Induction of memory CD8 T cells is important for controlling infections such as malaria HIV/AIDS, and for cancer immunotherapy. Accurate assessment of antigen (Ag)-specific CD8 T-cells is critical for vaccine optimization and defining correlates of protection. However, conditions for determining Ag-specific CD8 T-cell responses ex-vivo using ICS may be variable, especially in humans with complex antigens. Here, we used an attenuated whole parasite malaria vaccine model in humans and various experimental infections in mice to show that the duration of antigenic stimulation and timing of brefeldin A (BFA) addition influences the magnitude of Ag-specific and bystander T cell responses. Indeed, following immunization with an attenuated whole sporozoite malaria vaccine in humans, significantly higher numbers of IFN-γ producing memory CD8 T-cells comprised of antigen specific and bystander responses were detected by increasing the duration of Ag-stimulation prior to addition of BFA. Mechanistic analyses of virus-specific CD8 T-cells in mice revealed that the increase in IFNg producing CD8 T-cells was due to bystander activation of Ag-experienced memory CD8 T-cells, and correlated with the proportion of Ag-experienced CD8 T-cells in the stimulated populations. Incubation with anti-cytokine antibodies (ex. IL-12) improved accuracy in detecting bona-fide memory CD8 T-cell responses suggesting this as the mechanism for the bystander activation. These data have important implications for accurate assessment of immune responses generated by vaccines intended to elicit protective memory CD8 T-cells.

Authors

Matthew D. Martin, Isaac J. Jensen, Andrew S. Ishizuka, Mitchell Lefebvre, Qiang Shan, Hai-Hui Xue, John T. Harty, Robert A. Seder, Vladimir P. Badovinac

×

Chronic stimulation drives human NK cell dysfunction and epigenetic reprograming
Aimee M. Merino, … , Jeffrey S. Miller, Frank Cichocki
Aimee M. Merino, … , Jeffrey S. Miller, Frank Cichocki
Published June 18, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI125916.
View: Text | PDF
Article has an altmetric score of 13

Chronic stimulation drives human NK cell dysfunction and epigenetic reprograming

  • Text
  • PDF
Abstract

A population of Natural Killer (NK) cells expressing the activating receptor NKG2C and the maturation marker CD57 expands in response to human cytomegalovirus (HCMV) infection. CD3–CD56dimCD57+NKG2C+ NK cells are similar to CD8+ memory T cells with rapid and robust effector function upon re-stimulation, persistence, and epigenetic remodeling of the IFNG locus. Chronic antigen stimulation drives CD8+ memory T cell proliferation while also inducing genome-wide epigenetic reprograming and dysfunction. We hypothesized that chronic stimulation could similarly induce epigenetic reprograming and dysfunction in NK cells. Here we show that chronic stimulation of adaptive NK cells through NKG2C using plate-bound agonistic antibodies in combination with IL-15 drove robust proliferation and activation of CD3–CD56dimCD57+NKG2C+ NK cells while simultaneously inducing high expression of the checkpoint inhibitory receptors LAG-3 and PD-1. Marked induction of checkpoint inhibitory receptors was also observed on the surface of adaptive NK cells co-cultured with HCMV-infected endothelial cells. Chronically stimulated adaptive NK cells were dysfunctional when challenged with tumor targets. These cells exhibited a pattern of epigenetic reprograming, with genome-wide alterations in DNA methylation. Our study has important implications for cancer immunotherapy and suggest that exhausted NK cells could be targeted with inhibitory checkpoint receptor blockade.

Authors

Aimee M. Merino, Bin Zhang, Phillip R. Dougherty, Xianghua Luo, Jinhua Wang, Bruce R. Blazar, Jeffrey S. Miller, Frank Cichocki

×

Microbiota maintain colonic homeostasis by activating TLR2/MyD88/PI3K signaling in IL-10-producing regulatory B cells
Yoshiyuki Mishima, … , Christopher L. Karp, R. Balfour Sartor
Yoshiyuki Mishima, … , Christopher L. Karp, R. Balfour Sartor
Published June 18, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI93820.
View: Text | PDF
Article has an altmetric score of 7

Microbiota maintain colonic homeostasis by activating TLR2/MyD88/PI3K signaling in IL-10-producing regulatory B cells

  • Text
  • PDF
Abstract

Resident microbiota activate regulatory cells that modulate intestinal inflammation and promote and maintain intestinal homeostasis. IL-10 is a key mediator of immune regulatory function. Our studies described the functional importance and mechanisms by which gut microbiota and specific microbial components influenced the development of intestinal IL-10-producing B cells. We used fecal transplant to germ-free (GF) Il10+/EGFP reporter and Il10-/- mice to demonstrate that microbiota from specific pathogen-free mice primarily stimulated IL-10-producing colon-specific B cells and T regulatory-1 cells in ex-GF mice. IL-10 in turn down-regulated microbiota-activated mucosal inflammatory cytokines. TLR2/9 ligands and enteric bacterial lysates preferentially induced IL-10 production and regulatory capacity of intestinal B cells. Analysis of Il10+/EGFP mice crossed with additional gene-deficient strains and B cell co-transfer studies demonstrated that microbiota-induced IL-10-producing intestinal B cells ameliorated chronic T cell-mediated colitis in a TLR2, MyD88 and PI3K-dependent fashion. In vitro studies implicated PI3Kp110δ and AKT downstream signaling. These studies demonstrated that resident enteric bacteria activated intestinal IL-10-producing B cells through TLR2, MyD88 and PI3K pathways. These B cells reduced colonic T cell activation and maintained mucosal homeostasis in response to intestinal microbiota.

Authors

Yoshiyuki Mishima, Akihiko Oka, Bo Liu, Jeremy W. Herzog, Chang Soo Eun, Ting-Jia Fan, Emily Bulik-Sullivan, Ian M. Carroll, Jonathan J. Hansen, Liang Chen, Justin E. Wilson, Nancy C. Fisher, Jenny P. Y. Ting, Tomonori Nochi, Angela Wahl, J. Victor Garcia, Christopher L. Karp, R. Balfour Sartor

×

Neuronal FcγRI mediates acute and chronic joint pain
Li Wang, … , Michael J. Caterina, Lintao Qu
Li Wang, … , Michael J. Caterina, Lintao Qu
Published June 18, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI128010.
View: Text | PDF
Article has an altmetric score of 14

Neuronal FcγRI mediates acute and chronic joint pain

  • Text
  • PDF
Abstract

Although joint pain in rheumatoid arthritis (RA) is conventionally thought to result from inflammation, arthritis pain and joint inflammation are at least partially uncoupled. This suggests that additional pain mechanisms in RA remain to be explored. Here we show that FcγRI, an immune receptor for IgG immune complex (IgG-IC), is expressed in a subpopulation of joint sensory neurons and that, under naïve conditions, FcγRI crosslinking by IgG-IC directly activates the somata and peripheral terminals of these neurons to evoke acute joint hypernociception without obvious concurrent joint inflammation. These effects were diminished in both global and sensory neuron-specific Fcgr1 knockout mice. In murine models of inflammatory arthritis, FcγRI signaling was upregulated in joint sensory neurons. Acute blockade or global genetic deletion of Fcgr1 significantly attenuated arthritis pain and hyperactivity of joint sensory neurons without measurably altering joint inflammation. Conditional deletion of Fcgr1 in sensory neurons produced similar analgesic effects in these models. We therefore suggest that FcγRI expressed in sensory neurons contributes to arthritis pain independently of its functions in inflammatory cells. These findings expand our understanding of the immunosensory capabilities of sensory neurons and imply that neuronal FcγRI merits consideration as a target for treating RA pain.

Authors

Li Wang, Xiaohua Jiang, Qin Zheng, Sang-Min Jeon, Tiane Chen, Yan Liu, Heather Kulaga, Randall Reed, Xinzhong Dong, Michael J. Caterina, Lintao Qu

×

Oxidative stress in vagal neurons promotes parkinsonian pathology and intercellular α-synuclein transfer
Ruth E. Musgrove, … , Ayse Ulusoy, Donato A. Di Monte
Ruth E. Musgrove, … , Ayse Ulusoy, Donato A. Di Monte
Published June 13, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI127330.
View: Text | PDF
Article has an altmetric score of 53

Oxidative stress in vagal neurons promotes parkinsonian pathology and intercellular α-synuclein transfer

  • Text
  • PDF
Abstract

Specific neuronal populations display high vulnerability to pathological processes in Parkinson’s disease (PD). The dorsal motor nucleus of the vagus nerve (DMnX) is a primary site of pathological α-synuclein deposition and may play a key role in the spreading of α-synuclein lesions within and outside the CNS. Using in vivo models, we show that cholinergic neurons forming this nucleus are particularly susceptible to oxidative challenges and accumulation of reactive oxidative species (ROS). Targeted α-synuclein overexpression within these neurons triggered an oxidative stress that became significantly more pronounced after exposure to the ROS-generating agent paraquat. A more severe oxidative stress resulted in enhanced production of oxidatively modified forms of α-synuclein, increased α-synuclein aggregation into oligomeric species and marked degeneration of DMnX neurons. Enhanced oxidative stress also affected neuron-to-neuron protein transfer, causing an increased spreading of α-synuclein from the DMnX toward more rostral brain regions. In vitro experiments confirmed a greater propensity of α-synuclein to pass from cell to cell under pro-oxidant conditions, and identified nitrated α-synuclein forms as highly transferable protein species. These findings substantiate the relevance of oxidative injury in PD pathogenetic processes, establish a relationship between oxidative stress and vulnerability to α-synuclein pathology and define a new mechanism, enhanced cell-to-cell α-synuclein transmission, by which oxidative stress could promote PD development and progression.

Authors

Ruth E. Musgrove, Michael Helwig, Eun-Jin Bae, Helia Aboutalebi, Seung-Jae Lee, Ayse Ulusoy, Donato A. Di Monte

×

Apolipoprotein A-I mimetics mitigate intestinal inflammation in COX2-dependent inflammatory bowel disease model
David Meriwether, … , Alan M. Fogelman, Srinivasa T. Reddy
David Meriwether, … , Alan M. Fogelman, Srinivasa T. Reddy
Published June 11, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI123700.
View: Text | PDF
Article has an altmetric score of 15

Apolipoprotein A-I mimetics mitigate intestinal inflammation in COX2-dependent inflammatory bowel disease model

  • Text
  • PDF
Abstract

Cyclooxygenase 2 (Cox2) total knockout and myeloid knockout (MKO) mice develop Crohn’s-like intestinal inflammation when fed cholate-containing high fat diet (CCHF). We demonstrated that CCHF impaired intestinal barrier function and increased translocation of endotoxin, initiating TLR/MyD88-dependent inflammation in Cox2 KO but not WT mice. Cox2 MKO increased pro-inflammatory mediators in LPS-activated macrophages, and in the intestinal tissue and plasma upon CCHF challenge. Cox2 MKO also reduced inflammation resolving lipoxin A4 (LXA4) in intestinal tissue, while administration of an LXA4 analog rescued disease in Cox2 MKO mice fed CCHF. The apolipoprotein A-I (APOA1) mimetic 4F mitigated disease in both the Cox2 MKO/CCHF and piroxicam-accelerated Il10-/- models of inflammatory bowel disease (IBD) and reduced elevated levels of pro-inflammatory mediators in tissue and plasma. APOA1 mimetic Tg6F therapy was also effective in reducing intestinal inflammation in the Cox2 MKO/CCHF model. We further demonstrated that APOA1 mimetic peptides: i) inhibited LPS and oxidized 1-palmitoyl-2-arachidonoyl-sn-phosphatidylcholine (oxPAPC) dependent pro-inflammatory responses in human macrophages and intestinal epithelium; and ii) directly cleared pro-inflammatory lipids from mouse intestinal tissue and plasma. Our results support a causal role for pro-inflammatory and inflammation resolving lipids in IBD pathology and a translational potential for APOA1 mimetic peptides for the treatment of IBD.

Authors

David Meriwether, Dawoud Sulaiman, Carmen Volpe, Anna Dorfman, Victor Grijalva, Nasrin Dorreh, R. Sergio Solorzano-Vargas, Jiafang Wang, Ellen O’Connor, Jeremy Papesh, Muriel Larauche, Hannah Trost, Mayakonda N. Palgunachari, G.M. Anantharamaiah, Harvey R. Herschman, Martin G. Martin, Alan M. Fogelman, Srinivasa T. Reddy

×

RASA1-dependent cellular export of collagen IV controls blood and lymphatic vascular development
Di Chen, … , Philip E. Lapinski, Philip D. King
Di Chen, … , Philip E. Lapinski, Philip D. King
Published June 11, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI124917.
View: Text | PDF
Article has an altmetric score of 4

RASA1-dependent cellular export of collagen IV controls blood and lymphatic vascular development

  • Text
  • PDF
Abstract

Combined germline and somatic second hit inactivating mutations of the RASA1 gene, which encodes a negative regulator of the Ras signaling pathway, cause blood and lymphatic vascular lesions in the human autosomal dominant vascular disorder capillary malformation-arteriovenous malformation (CM-AVM). How RASA1 mutations in endothelial cells (EC) result in vascular lesions in CM-AVM is unknown. Here, using different murine models of RASA1-deficiency, we found that RASA1 was essential for the survival of EC during developmental angiogenesis in which primitive vascular plexuses are remodeled into hierarchical vascular networks. RASA1 was required for EC survival during developmental angiogenesis because it was necessary for export of collagen IV from EC and deposition in vascular basement membranes. In the absence of RASA1, dysregulated Ras mitogen-activated protein kinase (MAPK) signal transduction in EC resulted in impaired folding of collagen IV and its retention in the endoplasmic reticulum (ER) leading to EC death. Remarkably, the chemical chaperone, 4-phenylbutyric acid, and small molecule inhibitors of MAPK and 2-oxoglutarate dependent collagen IV modifying enzymes rescued ER retention of collagen IV and EC apoptosis and resulted in normal developmental angiogenesis. These findings have important implications with regards an understanding of the molecular pathogenesis of CM-AVM and possible means of treatment.

Authors

Di Chen, Joyce Teng, Paula North, Philip E. Lapinski, Philip D. King

×

Dectin-2-induced CCL2 production in tissue-resident macrophages ignites cardiac arteritis
Chie Miyabe, … , Tamihiro Kawakami, Andrew D. Luster
Chie Miyabe, … , Tamihiro Kawakami, Andrew D. Luster
Published June 6, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI123778.
View: Text | PDF
Article has an altmetric score of 18

Dectin-2-induced CCL2 production in tissue-resident macrophages ignites cardiac arteritis

  • Text
  • PDF
Abstract

Environmental triggers, including those from pathogens, are thought to play an important role in triggering autoimmune diseases, such as vasculitis, in genetically susceptible individuals. The mechanism by which activation of the innate immune system contributes to vessel-specific autoimmunity in vasculitis is not known. Systemic administration of Candida albicans water-soluble extract (CAWS) induces vasculitis in the aortic root and coronary arteries of mice that mimics human Kawasaki disease. We found that Dectin-2 signaling in macrophages resident in the aortic root of the heart induced early CCL2 production and the initial recruitment of CCR2+ inflammatory monocytes (iMo) into the aortic root and coronary arteries. iMo differentiated into monocyte-derived dendritic cells (Mo-DC) in the vessel wall and were induced to release IL-1β in a Dectin-2-Syk-NLRP3 inflammasome dependent pathway. IL-1β then activated cardiac endothelial cells to express CXCL1 and CCL2 and adhesion molecules that induced neutrophil and further iMo recruitment and accumulation in the aortic root and coronary arteries. Our findings demonstrate that Dectin-2-mediated induction of CCL2 production by macrophages resident in the aortic root and coronary arteries initiates vascular inflammation in a model of Kawasaki disease, suggesting an important role for the innate immune system in initiating vasculitis.

Authors

Chie Miyabe, Yoshishige Miyabe, Laura Moreno, Jeffrey Lian, Rod A. Rahimi, Noriko N. Miura, Naohito Ohno, Yoichiro Iwakura, Tamihiro Kawakami, Andrew D. Luster

×

Adenylyl cyclase 5-generated cAMP controls cerebral vascular reactivity during diabetic hyperglycemia
Arsalan U. Syed, … , Madeline Nieves-Cintrón, Manuel F. Navedo
Arsalan U. Syed, … , Madeline Nieves-Cintrón, Manuel F. Navedo
Published June 4, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI124705.
View: Text | PDF
Article has an altmetric score of 134

Adenylyl cyclase 5-generated cAMP controls cerebral vascular reactivity during diabetic hyperglycemia

  • Text
  • PDF
Abstract

Elevated blood glucose (hyperglycemia) is a hallmark metabolic abnormality in diabetes. Hyperglycemia is associated with protein kinase A (PKA)-mediated stimulation of L-type Ca2+ channels in arterial myocytes resulting in increased vasoconstriction. However, the mechanisms by which glucose activates PKA remain unclear. Here, we showed that elevating extracellular glucose stimulates cAMP production in arterial myocytes, and that this was specifically dependent on adenylyl cyclase 5 (AC5) activity. Super-resolution imaging suggested nanometer proximity between subpopulations of AC5 and the L-type Ca2+ channel pore-forming subunit CaV1.2. In vitro, in silico, ex vivo and in vivo experiments revealed that this close association is critical for stimulation of L-type Ca2+ channels in arterial myocytes and increased myogenic tone upon acute hyperglycemia. This pathway supported the increase in L-type Ca2+ channel activity and myogenic tone in two animal models of diabetes. Our collective findings demonstrate a unique role for AC5 in PKA-dependent modulation of L-type Ca2+ channel activity and vascular reactivity during acute hyperglycemia and diabetes.

Authors

Arsalan U. Syed, Gopireddy R. Reddy, Debapriya Ghosh, Maria Paz Prada, Matthew A. Nystoriak, Stefano Morotti, Eleonora Grandi, Padmini Sirish, Nipavan Chiamvimonvat, Johannes W. Hell, Luis F. Santana, Yang K. Xiang, Madeline Nieves-Cintrón, Manuel F. Navedo

×

Systemic silencing of PHD2 causes reversible immune regulatory dysfunction
Atsushi Yamamoto, … , Peter J. Ratcliffe, Chris W. Pugh
Atsushi Yamamoto, … , Peter J. Ratcliffe, Chris W. Pugh
Published June 4, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI124099.
View: Text | PDF
Article has an altmetric score of 37

Systemic silencing of PHD2 causes reversible immune regulatory dysfunction

  • Text
  • PDF
Abstract

Physiological effects of cellular hypoxia are sensed by prolyl hydroxylase (PHD) enzymes which regulate HIFs. Genetic interventions on HIF/PHD pathways reveal multiple phenotypes that extend the known biology of hypoxia. Recent studies unexpectedly implicate HIF in aspects of multiple immune and inflammatory pathways. However such studies are often limited by systemic lethal effects and/or use tissue-specific recombination systems, which are inherently irreversible, un-physiologically restricted and difficult to time. To study these processes better we developed recombinant mice which express tetracycline-regulated shRNAs broadly targeting the main components of the HIF/PHD pathway, permitting timed bi-directional intervention. We have shown that stabilization of HIF levels in adult mice through PHD2 enzyme silencing by RNA interference, or inducible recombination of floxed alleles, results in multi-lineage leukocytosis and features of autoimmunity. This phenotype was rapidly normalized on re-establishment of the hypoxia-sensing machinery when shRNA expression was discontinued. In both situations these effects were mediated principally through the Hif2a isoform. Assessment of cells bearing regulatory T cell markers from these mice revealed defective function and pro-inflammatory effects in vivo. We believe our findings have shown a new role for the PHD2/Hif2a couple in the reversible regulation of T cell and immune activity.

Authors

Atsushi Yamamoto, Joanna Hester, Philip S. Macklin, Kento Kawai, Masateru Uchiyama, Daniel Biggs, Tammie Bishop, Katherine Bull, Xiaotong Cheng, Eleanor Cawthorne, Mathew L. Coleman, Tanya L. Crockford, Ben Davies, Lukas E. Dow, Rob Goldin, Kamil Kranc, Hiromi Kudo, Hannah Lawson, James McAuliffe, Kate Milward, Cheryl L. Scudamore, Elizabeth Soilleux, Fadi Issa, Peter J. Ratcliffe, Chris W. Pugh

×
  • ← Previous
  • 1
  • 2
  • …
  • 141
  • 142
  • 143
  • …
  • 155
  • 156
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Posted by 25 X users
168 readers on Mendeley
See more details
Picked up by 1 news outlets
Blogged by 1
Posted by 1 X users
66 readers on Mendeley
See more details
Posted by 18 X users
Highlighted by 1 platforms
44 readers on Mendeley
See more details
Posted by 12 X users
On 2 Facebook pages
158 readers on Mendeley
See more details
Posted by 3 X users
Referenced in 1 patents
Highlighted by 1 platforms
60 readers on Mendeley
See more details
Picked up by 7 news outlets
Posted by 9 X users
On 1 Facebook pages
135 readers on Mendeley
See more details
Picked up by 17 news outlets
Posted by 24 X users
On 3 Facebook pages
Highlighted by 1 platforms
44 readers on Mendeley
See more details
Picked up by 1 news outlets
Posted by 17 X users
47 readers on Mendeley
See more details
Posted by 2 X users
Referenced in 1 patents
42 readers on Mendeley
See more details
Picked up by 4 news outlets
Posted by 16 X users
On 2 Facebook pages
65 readers on Mendeley
See more details