The molecular mechanisms responsible for the high immunosuppressive capacity of CD4+ regulatory T cells (Tregs) in tumors are poorly known. High-dimensional single cell profiling of T cells from chemotherapy-naïve individuals with non-small cell lung cancer identified the transcription factor IRF4 as specifically expressed by a subset of intratumoral CD4+ effector Tregs with superior suppressive activity. In contrast to the IRF4– counterparts, IRF4+ Tregs expressed a vast array of suppressive molecules, and their presence correlated with multiple exhausted subpopulations of T cells. Integration of transcriptomic and epigenomic data revealed that IRF4, either alone or in combination with its partner BATF, directly controlled a molecular program responsible for immunosuppression in tumors. Accordingly, deletion of Irf4 exclusively in Tregs resulted in delayed tumor growth in mice while the abundance of IRF4+ Tregs correlated with poor prognosis in patients with multiple human cancers. Thus, a common mechanism underlies immunosuppression in the tumor microenvironment irrespectively of the tumor type.
Giorgia Alvisi, Jolanda Brummelman, Simone Puccio, Emilia Maria Cristina Mazza, Elisa Paoluzzi Tomada, Agnese Losurdo, Veronica Zanon, Clelia Peano, Federico S. Colombo, Alice Scarpa, Marco Alloisio, Ajithkumar Vasanthakumar, Rahul Roychoudhuri, Marinos Kallikourdis, Massimiliano Pagani, Egesta Lopci, Pierluigi Novellis, Jonas Blume, Axel Kallies, Giulia Veronesi, Enrico Lugli
Mycobacterium tuberculosis (Mtb) has co-evolved with humans for millennia and developed multiple mechanisms to evade host immunity. Restoring host immunity in order to improve outcomes and potentially shorten existing therapy will require identifying the full complement by which host immunity is inhibited. Perturbing host DNA methylation is a mechanism induced by chronic infections such as HIV, HPV, LCMV and schistosomiasis to evade host immunity. Here, we evaluated the DNA methylation status of TB patients and their asymptomatic household contacts demonstrating that TB patients have DNA hyper-methylation of the IL-2-STAT5, TNF-NF-ϰB and IFN-γ signaling pathways. By MSRE-qPCR, multiple genes of the IL-12-IFN-γ signaling pathway (IL12B, IL12RB2, TYK2, IFNGR1, JAK1 and JAK2) were hyper-methylated in TB patients. The DNA hyper-methylation of these pathways is associated with decreased immune responsiveness with decreased mitogen-induced upregulation of IFN-γ, TNF, IL-6, CXCL9, CXCL10 and IL-1β production. The DNA hyper-methylation of the IL-12-IFN-γ pathway was associated with decreased IFN-γ induced gene expression and decreased IL-12 inducible up-regulation of IFN-γ. This work demonstrates that immune cells from TB patients are characterized by DNA hyper-methylation of genes critical to mycobacterial immunity resulting in decreased mycobacteria-specific and non-specific immune responsiveness.
Andrew DiNardo, Kimal Rajapakshe, Tomoki Nishiguchi, Godwin Mtetwa, Sandra L. Grimm, Qiniso Dlamini, Jaquiline Kahari, Sanjana Mahapatra, Alexander W. Kay, Gugu Maphalala, Emily M. Mace, George Makedonas, Jeffrey D. Cirillo, Mihai Netea, Reinout van Crevel, Cristian Coarfa, Anna M. Mandalakas
The mechanisms underlying rapid elimination of herpes simplex virus-2 (HSV-2) in the human genital tract despite low tissue-resident CD8+ and CD4+ T-cell density (TRM) are unknown. We analyzed shedding episodes during chronic HSV-2 infection: viral clearance always predominated within 24 hours of detection even if viral load exceeded 107 HSV DNA copies; surges in granzyme B and interferon-γ occurred within the early hours after reactivation and correlated with local viral load. We next developed an agent-based mathematical model of an HSV-2 genital ulcer to integrate mechanistic observations of TRM in situ proliferation, trafficking, cytolytic effects and cytokine alarm signaling from murine studies with viral kinetics, histopathology and lesion size data from humans. A sufficiently high density of HSV-2 specific TRM predicted rapid elimination of infected cells, but our data suggest that such TRM densities are relatively uncommon in infected tissues. At lower, more commonly observed TRM densities, TRM must initiate a rapidly diffusing, polyfunctional cytokine response with activation of bystander T cells in order to eliminate a majority of infected cells and eradicate briskly spreading HSV-2 infection.
Pavitra Roychoudhury, David A. Swan, Elizabeth R. Duke, Lawrence Corey, Jia Zhu, Veronica A. Davé, Laura E. Richert-Spuhler, Jennifer M. Lund, Martin Prlic, Joshua T. Schiffer
Salt inducible kinases (SIKs) are key regulators of cellular metabolism and growth, but their role in cardiomyocyte plasticity and heart failure pathogenesis remains unknown. Here, we showed that loss of SIK1 kinase activity protected against adverse cardiac remodeling and heart failure pathogenesis in rodent models and human iPSC-derived cardiomyocytes. We found that SIK1 phosphorylated and stabilized histone deacetylase 7 (HDAC7) protein during cardiac stress, an event that is required for pathologic cardiomyocyte remodeling. Gain- and loss-of-function studies of HDAC7 in cultured cardiomyocytes implicated HDAC7 as a pro-hypertrophic signaling effector that can induce c-Myc expression, indicating a functional departure from the canonical MEF2 co-repressor function of class IIa HDACs. Taken together, our findings reveal what we believe to be a previously unrecognized role for a SIK1-HDAC7 axis in regulating cardiac stress responses and implicate this pathway as a potential target in human heart failure.
Austin Hsu, Qiming Duan, Sarah McMahon, Yu Huang, Sarah A.B. Wood, Nathanael S. Gray, Biao Wang, Benoit G. Bruneau, Saptarsi M. Haldar
De novo lipogenesis is tightly regulated by insulin and nutritional signals to maintain metabolic homeostasis; excessive lipogenesis induces lipotoxicity, leading to nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes. Genetic lipogenic programs have been extensively investigated, but epigenetic regulation of lipogenesis is poorly understood. Here, we identified Slug as an important epigenetic regulator of lipogenesis. Hepatic Slug levels were markedly upregulated in mice by either feeding or insulin treatment. In primary hepatocytes, insulin stimulation increased Slug expression, stability, and interactions with epigenetic enzyme lysine-specific demethylase-1 (Lsd1). Slug bound to the fatty acid synthase (Fasn) promoter where Slug-associated Lsd1 catalyzed H3K9 demethylation, thereby stimulating Fasn expression and lipogenesis. Ablation of Slug blunted insulin-stimulated lipogenesis; conversely, overexpression of Slug, but not a Lsd1 binding-defective Slug mutant, stimulated Fasn expression and lipogenesis. Lsd1 inhibitor treatment also blocked Slug-stimulated lipogenesis. Remarkably, hepatocyte-specific deletion of Slug inhibited the hepatic lipogenic program and protected against obesity-associated NAFLD, insulin resistance, and glucose intolerance in mice. Conversely, liver-restricted overexpression of Slug, but not the Lsd1 binding-defective Slug mutant, had the opposite effects. These results unveil an insulin/Slug/Lsd1/H3K9 demethylation lipogenic pathway that promotes NAFLD and type 2 diabetes.
Yan Liu, Haiyan Lin, Lin Jiang, Qingsen Shang, Lei Yin, Jiandie D. Lin, Wen-Shu Wu, Liangyou Rui
Given the numerous health benefits of exercise, understanding how exercise capacity is regulated is a question of paramount importance. Circulating interleukin-6 (IL-6) levels surge during exercise and IL-6 favors exercise capacity. However, neither the cellular origin of circulating IL-6 during exercise nor the means by which this cytokine enhances exercise capacity have been formally established yet. Here we show through genetic means that the majority of circulating IL-6 detectable during exercise originates from muscle and that to increase exercise capacity, IL-6 must signal in osteoblasts to favor osteoclast differentiation and the release of bioactive osteocalcin in the general circulation. This explains why mice lacking the IL-6 receptor only in osteoblasts exhibit a deficit in exercise capacity of similar severity to the one seen in mice lacking muscle-derived IL-6 (mIL-6), and why this deficit is correctable by osteocalcin but not by IL-6. Furthermore, in agreement with the notion that IL-6 acts through osteocalcin, we demonstrate that mIL-6 promotes nutrient uptake and catabolism into myofibers during exercise in an osteocalcin-dependent manner. Lastly, we show that the crosstalk between osteocalcin and IL-6 is conserved between rodents and humans. This study provides evidence that a muscle-bone-muscle endocrine axis is necessary to increase muscle function during exercise in rodents and humans.
Subrata Chowdhury, Logan C Schulz, Biagio Palmisano, Parminder Singh, Julian Meyer Berger, Vijay K. Yadav, Paula Mera, Helga Ellingsgaard, Juan Hidalgo, Jens C. Brüning, Gerard Karsenty
Chimeric antigen receptor (CAR) T cell therapies can eliminate relapsed and refractory tumors, but the durability of anti-tumor activity requires in vivo persistence. Differential signaling through the CAR costimulatory domain can alter the T cell metabolism, memory differentiation, as well as influence long-term persistence. CAR-T cells costimulated with 4-1BB or ICOS persist in xenograft models but those constructed with CD28 exhibit rapid clearance. Here, we show that a single amino acid residue in CD28 drove T cell exhaustion and hindered the persistence of CD28-based CAR-T cells and substituting this asparagine to phenylalanine (CD28-YMFM) promoted durable anti-tumor control. In addition, CD28-YMFM CAR-T cells exhibited reduced T cell differentiation and exhaustion as well as increased skewing towards Th17 cells. Reciprocal modification of ICOS-containing CAR-T cells abolished in vivo persistence and anti-tumor activity. This finding suggests modifications to the co-stimulatory domains of CAR-T cells can enable longer persistence and thereby improve anti-tumor response.
Sonia Guedan, Aviv Madar, Victoria Casado-Medrano, Carolyn E. Shaw, Anna Wing, Fang Liu, Regina M. Young, Carl H. June, Avery D. Posey Jr.
Arterial cardiovascular events are the leading cause of death in patients with JAK2V617F myeloproliferative neoplasms (MPN). However, their mechanisms are poorly understood. The high prevalence of myocardial infarction without significant coronary stenosis or atherosclerosis in patients with MPN suggests that vascular function is altered. Consequences of JAK2V617F mutation on vascular reactivity are unknown. We observe here increased responses to vasoconstrictors in arteries from Jak2V617F mice, resulting from disturbed endothelial nitric oxide pathway and increased endothelial oxidative stress. This response was reproduced in wild-type mice by circulating microvesicles isolated from patients carrying JAK2V617F and by erythrocyte-derived microvesicles from transgenic mice. Microvesicles of other cellular origins had no effect. This effect was observed ex vivo on isolated aortas, but also in vivo on femoral arteries. Proteomic analysis of microvesicles derived from JAK2V617F erythrocytes identified increased expression of myeloperoxidase as the likely mechanism accounting for microvesicles effect. Myeloperoxidase inhibition in microvesicles derived from JAK2V617F erythrocytes supressed their effect on oxidative stress. Antioxidants, such as simvastatin and N-acetyl-cysteine, improved arterial dysfunction in Jak2V617F mice. In conclusion, JAK2V617F MPN are characterized by exacerbated vasoconstrictor responses resulting from increased endothelial oxidative stress caused by circulating erythrocyte-derived microvesicles. Simvastatin appears as promising therapeutic strategy in this setting.
Johanne Poisson, Marion Tanguy, Hortense Davy, Fatoumata Camara, Marie-Belle El Mdawar, Marouane Kheloufi, Tracy Dagher, Cécile Devue, Juliette Lasselin, Aurelie Plessier, Salma Merchant, Olivier Blanc-Brude, Michele Souyri, Nathalie Mougenot, Florent Dingli, Damarys Loew, Stephane N. Hatem, Chloe James, Jean-Luc Villeval, Chantal M. Boulanger, Pierre-Emmanuel Rautou
Although CEACAM1 (CC1) glycoprotein resides at the interface of immune liver injury and metabolic homeostasis, its role in orthotopic liver transplantation (OLT) remains elusive. We aimed to determine whether/how CEACAM1 signaling may affect hepatic ischemia-reperfusion injury (IRI) and OLT outcomes. In the mouse, donor liver CC1 null mutation augmented IRI-OLT (CC1-KO>WT) by enhancing ROS expression and HMGB1 translocation during cold storage, data supported by in vitro studies where hepatic flush from CC1-deficient livers enhanced macrophage activation in BMDM cultures. Although hepatic CC1 deficiency augmented cold stress-triggered ASK1/p-p38 upregulation, adjunctive ASK1 inhibition alleviated IRI/improved OLT survival by suppressing p-p38 upregulation, ROS induction/HMGB1 translocation (CC1-KO>WT); while ASK1 silencing (siRNA) promoted cytoprotection in cold-stressed and damage-prone CC1-deficient hepatocyte cultures. Consistent with mouse data, CEACAM1 expression in sixty human donor liver biopsies correlated negatively with activation of ASK1/p-p38 axis; while low-CC1 levels associated with increased ROS/HMGB1 translocation, enhanced innate/adaptive immune responses and inferior early OLT function. Notably, reduced donor liver CEACAM1 expression was identified as one of independent predictors for EAD in human OLT patients. Thus, as a checkpoint regulator of IR-stress/sterile inflammation, CEACAM1 may be considered as a denominator of donor hepatic tissue quality, and a target for therapeutic modulation in OLT recipients.
Kojiro Nakamura, Shoichi Kageyama, Fady M. Kaldas, Hirofumi Hirao, Takahiro Ito, Kentaro Kadono, Kenneth J. Dery, Hidenobu Kojima, David W. Gjertson, Rebecca A. Sosa, Maciej Kujawski, Ronald W. Busuttil, Elaine F. Reed, Jerzy W. Kupiec-Weglinski
Hair cells are the mechanosensory receptors of the inner ear, responsible for hearing and balance. Hair cell death and consequent hearing loss are common results of treatment with ototoxic drugs, including the widely-used aminoglycoside antibiotics. Induction of heat shock proteins (HSPs) confers protection against aminoglycoside-induced hair cell death via paracrine signaling that requires extracellular HSP70 (Heat Shock 70 kDa Protein). We investigated the mechanisms underlying this non-cell-autonomous protective signaling in the inner ear. In response to heat stress, inner ear tissue releases exosomes that carry HSP70 in addition to canonical exosome markers and other proteins. Isolated exosomes from heat-shocked utricles were sufficient to improve survival of hair cells exposed to the aminoglycoside antibiotic neomycin, while inhibition or depletion of exosomes from the extracellular environment abolished the protective effect of heat shock. Hair-cell specific expression of the known HSP70 receptor, Toll-like receptor 4 (TLR4), was required for the protective effect of exosomes, and exosomal HSP70 interacted with TLR4 on hair cells. Our results indicate that exosomes are a previously undescribed mechanism of intercellular communication in the inner ear that can mediate non-autonomous hair cell survival. Exosomes may represent a novel class of nano-carriers for delivery of therapeutics against hearing loss.
Andrew M. Breglio, Lindsey A. May, Melanie Barzik, Nora C. Welsh, Shimon P. Francis, Tucker Q. Costain, Lizhen Wang, D. Eric Anderson, Ronald S. Petralia, Ya-Xian Wang, Thomas B. Friedman, Matthew J.A. Wood, Lisa L. Cunningham
No posts were found with this tag.