Membrane protrusion and adhesion to the extracellular matrix, which involves the extension of actin filaments and formation of adhesion complexes, are the fundamental processes for cell migration, tumor invasion, and metastasis. How cancer cells efficiently coordinate these processes remains unclear. Here, we showed that membrane-targeted CLIC1 spatiotemporally regulates the formation of cell-matrix adhesions and membrane protrusions through the recruitment of PIP5Ks to the plasma membrane. Comparative proteomics identified CLIC1 upregulated in human hepatocellular carcinoma (HCC) and associated with tumor invasiveness, metastasis, and poor prognosis. In response to migration-related stimuli, CLIC1 recruited PIP5K1A and PIP5K1C from the cytoplasm to the leading edge of the plasma membrane, where PIP5Ks generate a PIP2-rich microdomain to induce the formation of integrin-mediated cell-matrix adhesions and the signaling for cytoskeleon extension. CLIC1 silencing inhibited the attachment of tumor cells to culture plates and the adherence and extravasation in the lung alveoli resulting in suppressed lung metastasis in mice. This study reveals an unrecognized mechanism that spatiotemporally coordinates the formation of both lamellipodium/invadopodia and nascent cell-matrix adhesions for directional migration and tumor invasion/metastasis. The unique traits of upregulation and membrane targeting of CLIC1 in cancer cells make it an excellent therapeutic target for tumor metastasis.
Jei-Ming Peng, Sheng-Hsuan Lin, Ming-Chin Yu, Sen-Yung Hsieh
MYC stimulates both metabolism and protein synthesis, but it is unknown how cells coordinate these complementary programs. Previous work reported that in a subset of small cell lung cancer (SCLC) cell lines, MYC activates guanosine triphosphate (GTP) synthesis and results in sensitivity to inhibitors of the GTP synthesis enzyme inosine monophosphate dehydrogenase (IMPDH). Here we demonstrated that primary MYCHigh human SCLC tumors also contain abundant guanosine nucleotides. We also found that elevated MYC in SCLCs with acquired chemoresistance rendered these otherwise recalcitrant tumors dependent on IMPDH. Unexpectedly, our data indicated that IMPDH links the metabolic and protein synthesis outputs of oncogenic MYC. Co-expression analysis placed IMPDH within the MYC-driven ribosome program, and GTP depletion prevented RNA Polymerase I (Pol I) from localizing to ribosomal DNA. Furthermore, the GTPases GPN1 and GPN3 were upregulated by MYC and directed Pol I to ribosomal DNA. Constitutively GTP-bound GPN1/3 mutants mitigated the effect of GTP depletion on Pol I, protecting chemoresistant SCLC cells from IMPDH inhibition. GTP therefore functions as a metabolic gate tethering MYC-dependent ribosome biogenesis to nucleotide sufficiency through GPN1 and GPN3. IMPDH dependence is a targetable vulnerability in chemoresistant, MYCHigh SCLC.
Fang Huang, Kenneth Huffman, Zixi Wang, Xun Wang, Kailong Li, Feng Cai, Chendong Yang, Ling Cai, Terry S. Shih, Lauren G. Zacharias, Andrew S. Chung, Qian Yang, Milind D. Chalishazar, Abbie S. Ireland, C. Allison Stewart, Kasey R. Cargill, Luc Girard, Yi Liu, Min Ni, Jian Xu, Xudong Wu, Hao Zhu, Benjamin J. Drapkin, Lauren A. Byers, Trudy G. Oliver, Adi Gazdar, John Minna, Ralph DeBerardinis
While platelets are the cellular mediators of thrombosis, platelets are also immune cells. Platelets interact both directly and indirectly with immune cells, impacting their activation and differentiation, as well as all phases of the immune response. Megakaryocytes (Mks) are the cell source of circulating platelets, and until recently Mks were typically only considered as bone marrow (BM) resident cells. However, platelet producing Mks also reside in the lung, and lung Mks express greater levels of immune molecules compared to BM Mks. We therefore sought to define the immune functions of lung Mks. Using single cell RNA-Seq of BM and lung myeloid enriched cells, we found that lung Mks (MkL) had gene expression patterns that are similar to antigen presenting cells (APC). This was confirmed using imaging and conventional flow cytometry. The immune phenotype of Mks was plastic and driven by the tissue immune environment as evidenced by BM Mks having a MkL like phenotype under the influence of pathogen receptor challenge and lung associated immune molecules, such as IL-33. Our in vitro and in vivo assays demonstrated that MkL internalized and processed both antigenic proteins and bacterial pathogens. Furthermore, MkL induced CD4+ T cell activation in a MHC II dependent manner both in vitro and in vivo. These data indicated that Mks in the lung had key immune regulatory roles dictated in part by the tissue environment.
Daphne N. Pariser, Zachary T. Hilt, Sara K. Ture, Sara K. Blick-Nitko, Mark R. Looney, Simon J. Cleary, Estheany Roman-Pagan, Jerry Saunders II, Steve N. Georas, Janelle M. Veazey, Ferralita Madere, Laura Tesoro Santos, Allison M. Arne, Nguyen PT Huynh, Alison C. Livada, Selena M. Guerrero-Martin, Claire E. Lyons, Kelly A. Metcalf Pate, Kathleen E. McGrath, James Palis, Craig Morrell
Psoriasis is a chronic inflammatory skin disease characterized by inflammatory cell infiltration, as well as hyperproliferation of keratinocytes in skin lesions, and is considered a metabolic syndrome. We found that the expression of galectin-7 is reduced in the skin lesions of patients with psoriasis. IL-17A and TNF-α, two cytokines intimately involved in the development of psoriatic lesions, suppressed galectin-7 expression in human primary keratinocytes (HEKn cells) and the immortalized human keratinocyte cell line HaCaT. A galectin-7 knockdown in these cells elevated the production of IL-6 and IL-8 and enhanced ERK signaling when the cells were stimulated with IL-17A. Galectin-7 attenuated IL-17A–induced production of inflammatory mediators by keratinocytes via the miR-146a–ERK pathway. Moreover, galectin-7–deficient mice showed enhanced epidermal hyperplasia and skin inflammation in response to intradermal IL-23 injection. We identified fluvastatin as an inducer of galectin-7 expression by connectivity map (cMAP) analysis, confirmed this effect in keratinocytes, and demonstrated that fluvastatin attenuated IL-6 and IL-8 production induced by IL-17A. Thus, we validate a role of galectin-7 in the pathogenesis of psoriasis, in both epidermal hyperplasia and keratinocyte-mediated inflammatory responses, and formulated a rationale for the use of statins in the treatment of psoriasis.
Hung-Lin Chen, Chia-Hui Lo, Chi-Chun Huang, Meng-Ping Lu, Po-Yuan Hu, Chang-Shan Chen, Di-Yen Chueh, Peilin Chen, Teng-Nan Lin, Yuan-Hsin Lo, Yu-Ping Hsiao, Daniel K. Hsu, Fu-Tong Liu
A growing number of long non-coding RNAs (lncRNAs) have emerged as vital metabolic regulators. However, most human lncRNAs are non-conserved and highly tissue-specific, vastly limiting our ability to identify human lncRNA metabolic regulators (hLMRs). In this study, we establish a pipeline to identify putative hLMRs that are metabolically sensitive, disease-relevant, and population applicable. We first progressively processed multilevel human transcriptome data to select liver lncRNAs that exhibit highly dynamic expression in the general population, show differential expression in a nonalcoholic fatty liver disease (NAFLD) population, and response to dietary intervention in a small NAFLD cohort. We then experimentally demonstrated the responsiveness of selected hepatic lncRNAs to defined metabolic milieus in a liver-specific humanized mouse model. Furthermore, by extracting a concise list of protein-coding genes that are persistently correlated with lncRNAs in general and NAFLD populations, we predicted the specific function for each hLMR. Using gain- and loss-of-function approaches in humanized mice as well as ectopic expression in conventional mice, we validated the regulatory role of one non-conserved hLMR in cholesterol metabolism by coordinating with an RNA-binding protein, PTBP1, to modulate the transcription of cholesterol synthesis genes. Our work overcome the heterogeneity intrinsic to human data to enable the efficient identification and functional definition of disease-relevant human lncRNAs in metabolic homeostasis.
Xiangbo Ruan, Ping Li, Yonghe Ma, Chengfei Jiang, Yi Chen, Yu Shi, Nikhil Gupta, Fayaz Seifuddin, Mehdi Pirooznia, Yasuyuki Ohnishi, Nao Yoneda, Megumi Nishiwaki, Gabrijela Dumbovic, John L. Rinn, Yuichiro Higuchi, Kenji Kawai, Hiroshi Suemizu, Haiming Cao
Mutations in the core RNA splicing factor SF3B1 are prevalent in leukemias and uveal melanoma but hotspot SF3B1 mutations are also seen in epithelial malignancies such as breast cancer. Although hotspot mutations in SF3B1 alter hematopoietic differentiation, whether SF3B1 mutations contribute to epithelial cancer development and progression is unknown. Here, we identify that SF3B1 mutations in mammary epithelial and breast cancer cells induce a recurrent pattern of aberrant splicing leading to activation of AKT and NF-kB, enhanced cell migration, and accelerated tumorigenesis. Transcriptomic analysis of human cancer specimens, MMTV-cre Sf3b1K700E/WT mice, and isogenic mutant cell lines identified hundreds of aberrant 3’ splice sites (3’ss) induced by mutant SF3B1. Consistently between mouse and human tumors, mutant SF3B1 promoted aberrant splicing (dependent on aberrant branchpoints as well as pyrimidines downstream of the cryptic 3’ss) and consequent suppression of PPP2R5A and MAP3K7, critical negative regulators of AKT and NF-kB. Coordinate activation of NF-kB and AKT signaling was observed in the knock-in models, leading to accelerated cell migration and tumor development in combination with mutant PIK3CA but also hypersensitizing cells to AKT kinase inhibitors. These data identify hotspot mutations in SF3B1 as an important contributor to breast tumorigenesis and reveal unique vulnerabilities in cancers harboring them.
Bo Liu, Zhaoqi Liu, Sisi Chen, Michelle Ki, Caroline Erickson, Jorge S. Reis-Filho, Benjamin H. Durham, Qing Chang, Elisa de Stanchina, Yiwei Sun, Raul Rabadan, Omar Abdel-Wahab, Sarat Chandarlapaty
Obesity occurs when energy expenditure is outweighed by energy intake. Tuberal hypothalamic nuclei, including the arcuate nucleus (ARC), ventromedial nucleus (VMH), and dorsomedial nucleus (DMH), control for food intake and energy expenditure. Here we reported that, contrary to females, male mice lacking circadian nuclear receptors REV-ERB alpha and beta in the tuberal hypothalamus (HDKO) gained excessive weight on an obesogenic high fat diet due to both decreased energy expenditure and increased food intake during the light phase. Moreover, rebound food intake after fasting was markedly increased in HDKO mice. Integrative transcriptomic and cistromic analyses revealed that such disruption in feeding behavior was due to perturbed REV-ERB-dependent leptin signaling in the ARC. Indeed, in vivo leptin sensitivity was impaired in HDKO mice on an obesogenic diet in a diurnal manner. Thus, REV-ERBs play a crucial role in hypothalamic control of food intake and diurnal leptin sensitivity in diet-induced obesity.
Marine Adlanmerini, Hoang C. B. Nguyen, Brianna M. Krusen, Clare W. Teng, Caroline E. Geisler, Lindsey C. Peed, Bryce J. Carpenter, Matthew R. Hayes, Mitchell A. Lazar
Dysfunction of primary cilia is related to dyshomeostasis, leading to a wide range of disorders. The ventromedial hypothalamus (VMH) is known to regulate several homeostatic processes, but those modulated specifically by VMH-primary cilia are not yet known. In this study, we identify VMH-primary cilia as an important organelle that maintains energy and skeletal homeostasis by modulating the autonomic nervous system. We established loss-of-function models of primary cilia in the VMH by either targeting IFT88 (IFT88 KOSF-1) using steroidogenic factor 1-Cre (SF1-Cre) or injecting an adeno-associated virus Cre (AAV-Cre) directly into the VMH. Functional impairments of VMH-primary cilia were linked to decreased sympathetic activation and central leptin resistance, which led to marked obesity and bone density accrual. Obesity was caused by hyperphagia, decreased energy expenditure, and blunted brown fat function, as well as associated with insulin and leptin resistance. The effect of bone density accrual was independent from obesity, as it was caused by the decreased sympathetic tone resulting in increased osteoblastic and decreased osteoclastic activities in the IFT88 KOSF-1 and VMH-primary cilia knock-down mice. Overall, our current study identifies VMH-primary cilia as a critical hypothalamic organelle that maintains energy and skeletal homeostasis.
Ji Su Sun, Dong Joo Yang, Ann W. Kinyua, Seul Gi Yoon, Je Kyung Seong, Juwon Kim, Seok Jun Moon, Dong Min Shin, Yun-Hee Choi, Ki Woo Kim
Protein tyrosine phosphatase non-receptor type 2 (PTPN2) recently emerged as a promising cancer immunotherapy target. We set to investigate the functional role of PTPN2 in the pathogenesis of human colorectal carcinoma (CRC) as its role in immune-silent solid tumors is poorly understood. We demonstrate that in human CRC, increased PTPN2 expression and activity correlated with disease progression and decreased immune responses in tumor tissues. Particularly, stage II and III tumors displayed enhanced PTPN2 protein expression in tumor-infiltrating T-cells and increased PTPN2 levels negatively correlated with PD1, CTLA4, STAT1 and granzyme A. In vivo, T-cell and dendritic cell-specific PTPN2 deletion reduced tumor burden in several CRC models by promoting CD44+ effector/memory T-cells, as well as CD8+ T-cell infiltration and cytotoxicity into the tumor. In direct relevance to CRC treatment, T-cell-specific PTPN2 deletion potentiated anti-PD-1 efficacy and induced anti-tumor memory formation upon tumor re-challenge in vivo. Our data suggest a role for PTPN2 in suppressing anti-tumor immunity and promoting tumor development in CRC patients. Our in vivo results uncover PTPN2 as a key player in controlling immunogenicity of CRC, with the strong potential to be exploited to promote cancer immunotherapy.
Egle Katkeviciute, Larissa Hering, Ana Montalban-Arques, Philipp Busenhart, Marlene Schwarzfischer, Roberto Manzini, Javier Conde, Kirstin Atrott, Silvia Lang, Gerhard Rogler, Elisabeth Naschberger, Vera S. Schellerer, Michael Stürzl, Andreas Rickenbacher, Matthias Turina, Achim Weber, Sebastian Leibl, Gabriel E. Leventhal, Mitchell Levesque, Onur Boyman, Michael Scharl, Marianne R. Spalinger
Dysfunction of immune and vascular systems has been implicated in aging and Alzheimer’s disease; however, their interrelatedness remains poorly understood. The complement pathway is a well-established regulator of innate immunity in the brain. Here, we report robust age-dependent increases in vascular inflammation, peripheral lymphocyte infiltration, and blood-brain barrier (BBB) permeability. These phenotypes were subdued by global inactivation and by endothelial-specific ablation of C3ar1. Using an in vitro model of the BBB, we identify intracellular Ca2+ as a downstream effector of C3a-C3aR signaling and a functional mediator of VE-cadherins junction and barrier integrity. Endothelial C3ar1 inactivation also dampened microglia reactivity and improved hippocampal and cortical volumes in the aging brain, demonstrating a crosstalk between brain vasculature dysfunction and immune cell activation and neurodegeneration. Further, prominent C3aR-dependent vascular inflammation is also observed in a tau transgenic mouse model. Our studies suggest that heightened C3a-C3aR signaling through endothelial cells promotes vascular inflammation and BBB dysfunction and contribute to overall neuroinflammation in aging and neurodegenerative disease.
Nicholas E. Propson, Ethan R. Roy, Alexandra Litvinchuk, Jorg Köhl, Hui Zheng
No posts were found with this tag.