Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Research

  • 1,755 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 119
  • 120
  • 121
  • …
  • 175
  • 176
  • Next →
Glucose deprivation induced aberrant FUT1-mediated fucosylation drives cancer stemness in hepatocellular carcinoma
Jane H.C. Loong, Tin-Lok Wong, Man Tong, Rakesh Sharma, Lei Zhou, Kai-Yu Ng, Hua-Jian Yu, Chi Han Li, Kwan Man, Chung-Mau Lo, Xin-Yuan Guan, Terence K. Lee, Jing-Ping Yun, Stephanie Kwai Yee Ma
Jane H.C. Loong, Tin-Lok Wong, Man Tong, Rakesh Sharma, Lei Zhou, Kai-Yu Ng, Hua-Jian Yu, Chi Han Li, Kwan Man, Chung-Mau Lo, Xin-Yuan Guan, Terence K. Lee, Jing-Ping Yun, Stephanie Kwai Yee Ma
View: Text | PDF

Glucose deprivation induced aberrant FUT1-mediated fucosylation drives cancer stemness in hepatocellular carcinoma

  • Text
  • PDF
Abstract

Rapidly growing tumors often experience hypoxia and nutrient (e.g., glucose) deficiency because of poor vascularization. Tumor cells respond to the cytotoxic effects of such stresses by inducing molecular adaptations that promote clonal selection of a more malignant tumor-initiating cell phenotype, especially in the innermost tumor regions. Here, we report a regulatory mechanism involving fucosylation by which glucose restriction promotes cancer stemness to drive drug resistance and tumor recurrence. Using hepatocellular carcinoma (HCC) as a model, we showed that restricted glucose availability enhanced the PERK-eIF2α-ATF4 signaling axis to drive fucosyltransferase-1 (FUT1) transcription via direct binding of ATF4 to the FUT1 promoter. FUT1 overexpression is a poor prognostic indicator for HCC. FUT1 inhibition could mitigate tumor initiation, self-renewal and drug resistance. Mechanistically, we demonstrated that CD147, ICAM-1, EGFR and EPHA2 are glycoprotein targets of FUT1, where such fucosylation would consequently converge on deregulated AKT-mTOR-4EBP1 signaling to drive cancer stemness. Treatment with an α-(1,2)-fucosylation inhibitor sensitized HCC tumors to sorafenib, a first-line molecular targeted drug used for advanced HCC patients, and reduced the tumor-initiating subset. FUT1 overexpression and/or CD147, ICAM-1, EGFR and EPHA2 fucosylation may be good prognostic markers and therapeutic targets for cancer patients.

Authors

Jane H.C. Loong, Tin-Lok Wong, Man Tong, Rakesh Sharma, Lei Zhou, Kai-Yu Ng, Hua-Jian Yu, Chi Han Li, Kwan Man, Chung-Mau Lo, Xin-Yuan Guan, Terence K. Lee, Jing-Ping Yun, Stephanie Kwai Yee Ma

×

Enhanced triacylglycerol catabolism by Carboxylesterase 1 promotes aggressive colorectal carcinoma
Daria Capece, Daniel D'Andrea, Federica Begalli, Laura Goracci, Laura Tornatore, James L. Alexander, Alessandra Di Veroli, Shi-Chi Leow, Thamil S. Vaiyapuri, James K. Ellis, Daniela Verzella, Jason Bennett, Luca Savino, Yue Ma, James S. McKenzie, Maria Luisa Doria, Sam E. Mason, Kern Rei Chng, Hector C. Keun, Gary Frost, Vinay Tergaonkar, Katarzyna Broniowska, Walter Stunkel, Zoltan Takats, James M. Kinross, Gabriele Cruciani, Guido Franzoso
Daria Capece, Daniel D'Andrea, Federica Begalli, Laura Goracci, Laura Tornatore, James L. Alexander, Alessandra Di Veroli, Shi-Chi Leow, Thamil S. Vaiyapuri, James K. Ellis, Daniela Verzella, Jason Bennett, Luca Savino, Yue Ma, James S. McKenzie, Maria Luisa Doria, Sam E. Mason, Kern Rei Chng, Hector C. Keun, Gary Frost, Vinay Tergaonkar, Katarzyna Broniowska, Walter Stunkel, Zoltan Takats, James M. Kinross, Gabriele Cruciani, Guido Franzoso
View: Text | PDF

Enhanced triacylglycerol catabolism by Carboxylesterase 1 promotes aggressive colorectal carcinoma

  • Text
  • PDF
Abstract

The ability to adapt to low-nutrient microenvironments is essential for tumor-cell survival and progression in solid cancers, such as colorectal carcinoma (CRC). Signaling by the NF-κB transcription-factor pathway associates with advanced disease stages and shorter survival in CRC patients. NF-κB has been shown to drive tumor-promoting inflammation, cancer-cell survival and intestinal epithelial cell (IEC) dedifferentiation in mouse models of CRC. However, whether NF-κB affects the metabolic adaptations that fuel aggressive disease in CRC patients is unknown. Here, we identified carboxylesterase 1 (CES1) as an essential NF-κB-regulated lipase linking obesity-associated inflammation with fat metabolism and adaptation to energy stress in aggressive CRC. CES1 promoted CRC-cell survival via cell-autonomous mechanisms that fuel fatty-acid oxidation (FAO) and prevent the toxic build-up of triacylglycerols. We found that elevated CES1 expression correlated with worse outcomes in overweight CRC patients. Accordingly, NF-κB drove CES1 expression in CRC consensus molecular subtype (CMS)4, associated with obesity, stemness and inflammation. CES1 was also upregulated by gene amplifications of its transcriptional regulator, HNF4A, in CMS2 tumors, reinforcing its clinical relevance as a driver of CRC. This subtype-based distribution and unfavourable prognostic correlation distinguished CES1 from other intracellular triacylglycerol lipases and suggest CES1 could provide a route to treat aggressive CRC.

Authors

Daria Capece, Daniel D'Andrea, Federica Begalli, Laura Goracci, Laura Tornatore, James L. Alexander, Alessandra Di Veroli, Shi-Chi Leow, Thamil S. Vaiyapuri, James K. Ellis, Daniela Verzella, Jason Bennett, Luca Savino, Yue Ma, James S. McKenzie, Maria Luisa Doria, Sam E. Mason, Kern Rei Chng, Hector C. Keun, Gary Frost, Vinay Tergaonkar, Katarzyna Broniowska, Walter Stunkel, Zoltan Takats, James M. Kinross, Gabriele Cruciani, Guido Franzoso

×

AAV9-mediated FIG4 delivery prolongs life span in Charcot Marie Tooth disease type 4J mouse model.
Maximiliano Presa, Rachel M. Bailey, Crystal Davis, Tara Murphy, Jenn Cook, Randy Walls, Hannah Wilpan, Laurent Bogdanik, Guy M. Lenk, Robert W. Burgess, Steven J. Gray, Cathleen Lutz
Maximiliano Presa, Rachel M. Bailey, Crystal Davis, Tara Murphy, Jenn Cook, Randy Walls, Hannah Wilpan, Laurent Bogdanik, Guy M. Lenk, Robert W. Burgess, Steven J. Gray, Cathleen Lutz
View: Text | PDF

AAV9-mediated FIG4 delivery prolongs life span in Charcot Marie Tooth disease type 4J mouse model.

  • Text
  • PDF
Abstract

Charcot-Marie-Tooth disease type 4J (CMT4J) is caused by recessive, loss-of-function mutations in FIG4, encoding a phosphoinositol(3,5)P2-phosphatase. CMT4J patients have both neuron loss and demyelination in the peripheral nervous system, with vacuolization indicative of endosome/lysosome trafficking defects. Although the disease is highly variable, the onset is often in childhood and FIG4 mutations can dramatically shorten lifespan. There is currently no treatment for CMT4J. Here we present the results of preclinical studies testing a gene therapy approach to restore FIG4 expression. A mouse model of CMT4J, the Fig4-pale tremor (plt) allele, was dosed with a single-stranded AAV9 to deliver a codon-optimized human FIG4 sequence. Untreated, Fig4plt/plt mice have a median survival of approximately 5 weeks. When treated with the AAV9-FIG4 vector at postnatal day 1 or 4, mice survived at least one year, with largely normal gross motor performance and little sign of neuropathy by neurophysiological or histopathological evaluation. When treated at postnatal day 7 or 11, life span was still significantly prolonged and peripheral nerve function was improved, but rescue was less complete. No unanticipated adverse effects were observed. Therefore, AAV9-mediated delivery of FIG4 is a well-tolerated and efficacious strategy in a mouse model of CMT4J.

Authors

Maximiliano Presa, Rachel M. Bailey, Crystal Davis, Tara Murphy, Jenn Cook, Randy Walls, Hannah Wilpan, Laurent Bogdanik, Guy M. Lenk, Robert W. Burgess, Steven J. Gray, Cathleen Lutz

×

Desmosomal COP9 regulates proteome degradation in arrhythmogenic right ventricular dysplasia/cardiomyopathy
Yan Liang, Robert C. Lyon, Jason Pellman, William H. Bradford, Stephan Lange, Julius Bogomolovas, Nancy D. Dalton, Yusu Gu, Marcus Bobar, Mong-Hong Lee, Tomoo Iwakuma, Vishal Nigam, Angeliki Asimaki, Melvin Scheinman, Kirk L. Peterson, Farah Sheikh
Yan Liang, Robert C. Lyon, Jason Pellman, William H. Bradford, Stephan Lange, Julius Bogomolovas, Nancy D. Dalton, Yusu Gu, Marcus Bobar, Mong-Hong Lee, Tomoo Iwakuma, Vishal Nigam, Angeliki Asimaki, Melvin Scheinman, Kirk L. Peterson, Farah Sheikh
View: Text | PDF

Desmosomal COP9 regulates proteome degradation in arrhythmogenic right ventricular dysplasia/cardiomyopathy

  • Text
  • PDF
Abstract

Dysregulated protein degradative pathways are increasingly recognized as mediators of human disease. This mechanism may have particular relevance to desmosomal proteins that play critical structural roles in both tissue architecture and cell-cell communication as destabilization/breakdown of the desmosomal proteome is a hallmark of genetic-based desmosomal-targeted diseases, such as the cardiac disease, arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C). However, no information exists on whether there are resident proteins that regulate desmosomal proteome homeostasis. Here we uncovered a cardiac COP9 desmosomal resident protein complex, composed of subunit 6 of the COP9 signalosome (CSN6), that enzymatically restricted neddylation and targeted desmosomal proteome degradation. CSN6 binding, localization, levels and function were impacted in hearts of classic mouse and human models of ARVD/C impacted by desmosomal loss and mutations, respectively. Loss of desmosomal proteome degradation control due to CSN6 loss and human desmosomal mutations destabilizing CSN6 were also sufficient to trigger ARVD/C in mice. We identified a desmosomal resident regulatory complex that restricted desmosomal proteome degradation and disease.

Authors

Yan Liang, Robert C. Lyon, Jason Pellman, William H. Bradford, Stephan Lange, Julius Bogomolovas, Nancy D. Dalton, Yusu Gu, Marcus Bobar, Mong-Hong Lee, Tomoo Iwakuma, Vishal Nigam, Angeliki Asimaki, Melvin Scheinman, Kirk L. Peterson, Farah Sheikh

×

Hunger-promoting AgRP neurons trigger an astrocyte-mediated feed-forward auto-activation loop in mice
Luis Varela, Bernardo Stutz, Jae Eun Song, Jae Geun Kim, Zhong-Wu Liu, Xiao-Bing Gao, Tamas L. Horvath
Luis Varela, Bernardo Stutz, Jae Eun Song, Jae Geun Kim, Zhong-Wu Liu, Xiao-Bing Gao, Tamas L. Horvath
View: Text | PDF

Hunger-promoting AgRP neurons trigger an astrocyte-mediated feed-forward auto-activation loop in mice

  • Text
  • PDF
Abstract

Synaptic plasticity is identified as innate to hypothalamic feeding circuits in their adaptation to the changing metabolic milieu in control of feeding and obesity. However, less is known about the regulatory principles of the dynamic changes of AgRP perikarya, a crucial region of the neuron gating excitation, and hence, feeding. Here we show that AgRP neurons activated either by food deprivation, ghrelin or chemogenetics decreased their own inhibitory tone while triggering mitochondrial adaptations in neighboring astrocytes. We found that it was the inhibitory neurotransmitter, GABA, released by AgRP neurons that evoked this astrocytic response, which in turn, resulted in increased glial ensheetment of AgRP perikaryal by glial processes and increased excitability of AgRP neurons. We also identified that astrocyte-derived prostaglandin E2 directly activated, via EP2 receptors, AgRP neurons. Taken together, these observations unmasked a feedforward, self-exciting loop in AgRP neuronal control mediated by astrocytes, a mechanism directly relevant for hunger, feeding and overfeeding.

Authors

Luis Varela, Bernardo Stutz, Jae Eun Song, Jae Geun Kim, Zhong-Wu Liu, Xiao-Bing Gao, Tamas L. Horvath

×

Tissue resident-like CD4+ T cells secreting IL-17 control Mycobacteria tuberculosis in the human lung
Paul Ogongo, Liku B. Tezera, Amanda Ardain, Shepherd Nhamoyebonde, Duran Ramsuran, Alveera Singh, Abigail Ngoepe, Farina Karim, Taryn Naidoo, Khadija Khan, Kaylesh J. Dullabh, Michael Fehlings, Boon Heng Lee, Alessandra Nardin, Cecilia S. Lindestam Arlehamn, Alessandro Sette, Samuel M. Behar, Adrie J.C. Steyn, Rajhmun Madansein, Henrik N. Kløverpris, Paul T. Elkington, Alasdair Leslie
Paul Ogongo, Liku B. Tezera, Amanda Ardain, Shepherd Nhamoyebonde, Duran Ramsuran, Alveera Singh, Abigail Ngoepe, Farina Karim, Taryn Naidoo, Khadija Khan, Kaylesh J. Dullabh, Michael Fehlings, Boon Heng Lee, Alessandra Nardin, Cecilia S. Lindestam Arlehamn, Alessandro Sette, Samuel M. Behar, Adrie J.C. Steyn, Rajhmun Madansein, Henrik N. Kløverpris, Paul T. Elkington, Alasdair Leslie
View: Text | PDF

Tissue resident-like CD4+ T cells secreting IL-17 control Mycobacteria tuberculosis in the human lung

  • Text
  • PDF
Abstract

T cell immunity is essential for the control of tuberculosis (TB), an important disease of the lung, and is generally studied in humans using peripheral blood cells. Mounting evidence, however, indicates that tissue resident memory T cells (Trm) are superior at controlling many pathogens, including Mycobacterium tuberculosis (Mtb), and can be quite different from those in circulation. Using freshly resected lung tissue, from individuals with active or previous TB, we identified distinct CD4 and CD8 Trm-like clusters within TB diseased lung tissue that were functional and enriched for IL-17 producing cells. Mtb-specific CD4 T cells producing TNF-α, IL-2 and IL-17 were highly expanded in the lung compared to matched blood samples, in which IL-17+ cells were largely absent. Strikingly, the frequency of Mtb-specific lung T cells making IL-17, but not other cytokines, inversely correlated with the plasma IL-1β levels, suggesting a potential link with disease severity. Using a human granuloma model, we showed the addition of either exogenous IL-17 or IL-2 enhanced immune control of Mtb and was associated with increased NO production. Taken together, these data support an important role for Mtb-specific Trm-like IL-17 producing cells in the immune control of Mtb in the human lung.

Authors

Paul Ogongo, Liku B. Tezera, Amanda Ardain, Shepherd Nhamoyebonde, Duran Ramsuran, Alveera Singh, Abigail Ngoepe, Farina Karim, Taryn Naidoo, Khadija Khan, Kaylesh J. Dullabh, Michael Fehlings, Boon Heng Lee, Alessandra Nardin, Cecilia S. Lindestam Arlehamn, Alessandro Sette, Samuel M. Behar, Adrie J.C. Steyn, Rajhmun Madansein, Henrik N. Kløverpris, Paul T. Elkington, Alasdair Leslie

×

Myeloid cell-derived PROS1 inhibits tumor metastasis by regulating inflammatory and immune responses via IL-10
Avi Maimon, Victor Levi-Yahid, Kerem Ben-Meir, Amit Halpern, Ziv Talmi, Shivam Priya, Gabriel Mizraji, Shani Mistriel-Zerbib, Michael Berger, Michal Baniyash, Sonja Loges, Tal Burstyn-Cohen
Avi Maimon, Victor Levi-Yahid, Kerem Ben-Meir, Amit Halpern, Ziv Talmi, Shivam Priya, Gabriel Mizraji, Shani Mistriel-Zerbib, Michael Berger, Michal Baniyash, Sonja Loges, Tal Burstyn-Cohen
View: Text | PDF

Myeloid cell-derived PROS1 inhibits tumor metastasis by regulating inflammatory and immune responses via IL-10

  • Text
  • PDF
Abstract

Stimulation of TAM (TYRO3, AXL and MERTK) Receptor Tyrosine Kinases promotes tumor progression through numerous cellular mechanisms. TAM cognate ligands GAS6 and PROS1 (for TYRO3 and MERTK) are secreted by host immune cells, an interaction which may support tumor progression. Here we reveal an unexpected anti-metastatic role for myeloid-derived PROS1, directly suppressing the metastatic potential of lung and breast tumor models. Pros1 deletion in myeloid cells led to increased lung metastasis, independent of primary tumor infiltration. PROS1-cKO BMDMs led to elevated TNFα, IL-6, Nos2 and IL-10 via modulation of the Socs3-NFκB pathway. Conditioned medium from cKO BMDMs enhanced EMT, ERK, AKT and STAT3 activation within tumor cells, and promoted IL-10 dependent invasion and survival. Macrophages isolated from metastatic lungs modulated T cell proliferation and function, as well as expression of costimulatory molecules on dendritic cells in a PROS1-dependent manner. Inhibition of MERTK kinase activity blocked PROS1-mediated suppression of TNFα and IL-6, but not of IL-10. Overall, using lung and breast cancer models, we identify the PROS1-MERTK axis within BMDMs as a potent regulator of adaptive immune responses with a potential to suppress metastatic seeding, and reveal IL-10 regulation by PROS1 to deviate from that of TNFα and IL-6.

Authors

Avi Maimon, Victor Levi-Yahid, Kerem Ben-Meir, Amit Halpern, Ziv Talmi, Shivam Priya, Gabriel Mizraji, Shani Mistriel-Zerbib, Michael Berger, Michal Baniyash, Sonja Loges, Tal Burstyn-Cohen

×

The 5α-reductase inhibitor finasteride reduces opioid self-administration in animal models of opioid use disorder
Gabriel D. Bosse, Roberto Cadeddu, Gabriele Floris, Ryan D. Farero, Eva Vigato, Suhjung J. Lee, Tejia Zhang, Nilesh W. Gaikwad, Kristen A. Keefe, Paul E.M. Phillips, Marco Bortolato, Randall T. Peterson
Gabriel D. Bosse, Roberto Cadeddu, Gabriele Floris, Ryan D. Farero, Eva Vigato, Suhjung J. Lee, Tejia Zhang, Nilesh W. Gaikwad, Kristen A. Keefe, Paul E.M. Phillips, Marco Bortolato, Randall T. Peterson
View: Text | PDF

The 5α-reductase inhibitor finasteride reduces opioid self-administration in animal models of opioid use disorder

  • Text
  • PDF
Abstract

Opioid use disorder (OUD) has become a leading cause of death in the US, yet current therapeutic strategies remain highly inadequate. To identify novel potential treatments for OUD, we screened a targeted selection of over 100 drugs using a recently developed opioid self-administration assay in zebrafish. This paradigm showed that finasteride, a steroidogenesis inhibitor approved for the treatment of benign prostatic hyperplasia and androgenetic alopecia, reduced self-administration of multiple opioids without affecting locomotion or feeding behavior. These findings were confirmed in rats; furthermore, finasteride reduced the physical signs associated with opioid withdrawal. In rat models of neuropathic pain, finasteride did not alter the antinociceptive effect of opioids and reduced withdrawal-induced hyperalgesia. Steroidomic analyses of the brains of fish treated with finasteride revealed a significant increase in dehydroepiandrosterone sulfate (DHEAS). Treatment with precursors of DHEAS reduced opioid self-administration in zebrafish in a fashion akin to the effects of finasteride. These results highlight the importance of steroidogenic pathways as a rich source of therapeutic targets for OUD and point to the potential of finasteride as a new treatment option for this disorder.

Authors

Gabriel D. Bosse, Roberto Cadeddu, Gabriele Floris, Ryan D. Farero, Eva Vigato, Suhjung J. Lee, Tejia Zhang, Nilesh W. Gaikwad, Kristen A. Keefe, Paul E.M. Phillips, Marco Bortolato, Randall T. Peterson

×

Structure-based phylogeny identifies Avoralstat as a TMPRSS2 inhibitor that prevents SARS-CoV-2 infection in mice
Young Joo Sun, Gabriel Velez, Dylan E. Parsons, Kun Li, Miguel E. Ortiz, Shaunik Sharma, Paul B. McCray Jr., Alexander G. Bassuk, Vinit B. Mahajan
Young Joo Sun, Gabriel Velez, Dylan E. Parsons, Kun Li, Miguel E. Ortiz, Shaunik Sharma, Paul B. McCray Jr., Alexander G. Bassuk, Vinit B. Mahajan
View: Text | PDF

Structure-based phylogeny identifies Avoralstat as a TMPRSS2 inhibitor that prevents SARS-CoV-2 infection in mice

  • Text
  • PDF
Abstract

Drugs targeting host proteins can act prophylactically to reduce viral burden early in disease and limit morbidity, even with antivirals and vaccination. Transmembrane serine protease 2 (TMPRSS2) is a human protease required for SARS-CoV-2 viral entry and may represent such a target. We hypothesized that drugs selected from proteins related by their tertiary structure, rather than their primary structure, were likely to interact with TMPRSS2. We created a structure-based phylogenetic computational tool named 3DPhyloFold to systematically identify structurally similar serine proteases with known therapeutic inhibitors and demonstrated effective inhibition of SARS-CoV-2 infection in vitro and in vivo. Several candidate compounds, Avoralstat, PCI-27483, Antipain, and Soybean-Trypsin-Inhibitor, inhibited TMPRSS2 in biochemical and cell infection assays. Avoralstat, a clinically tested Kallikrein-related B1 inhibitor, inhibited SARS-CoV-2 entry and replication in human airway epithelial cells. In an in vivo proof of principle, Avoralstat significantly reduced lung tissue titers and mitigated weight-loss when administered prophylactically to SARS-CoV-2 susceptible mice indicating its potential to be repositioned for COVID-19 prophylaxis in humans.

Authors

Young Joo Sun, Gabriel Velez, Dylan E. Parsons, Kun Li, Miguel E. Ortiz, Shaunik Sharma, Paul B. McCray Jr., Alexander G. Bassuk, Vinit B. Mahajan

×

Keratinocyte-derived microvesicle particles mediate Ultraviolet B radiation induced systemic immunosuppression
Langni Liu, Azeezat A. Awoyemi, Katherine E. Fahy, Pariksha Thapa, Christina Borchers, Benita Y. Wu, Cameron L. McGlone, Benjamin Schmeusser, Zafer Sattouf, Craig A. Rohan, Amy R. Williams, Elizabeth E. Cates, Christina Knisely, Lisa E. Kelly, Ji C. Bihl, David R. Cool, Ravi P. Sahu, Jinju Wang, Yanfang Chen, Christine M. Rapp, Michael G. Kemp, R. Michael Johnson, Jeffrey B. Travers
Langni Liu, Azeezat A. Awoyemi, Katherine E. Fahy, Pariksha Thapa, Christina Borchers, Benita Y. Wu, Cameron L. McGlone, Benjamin Schmeusser, Zafer Sattouf, Craig A. Rohan, Amy R. Williams, Elizabeth E. Cates, Christina Knisely, Lisa E. Kelly, Ji C. Bihl, David R. Cool, Ravi P. Sahu, Jinju Wang, Yanfang Chen, Christine M. Rapp, Michael G. Kemp, R. Michael Johnson, Jeffrey B. Travers
View: Text | PDF

Keratinocyte-derived microvesicle particles mediate Ultraviolet B radiation induced systemic immunosuppression

  • Text
  • PDF
Abstract

A complete carcinogen, Ultraviolet B radiation (290-320 nm; UVB), is the major cause of skin cancer. UVB-induced systemic immunosuppression that contributes to photocarcinogenesis is due to the glycerophosphocholine-derived lipid mediator Platelet-activating factor. A major question in photobiology is how UVB radiation, which only absorbs appreciably in the epidermal layers of skin, can generate systemic effects. UVB exposure and PAF Receptor (PAFR) activation in keratinocytes induce large amounts of microvesicle particle (extracellular vesicles 100-1000nm; MVP) release. MVPs released from skin keratinocytes in vitro in response to UVB (UVB-MVP) are dependent upon the keratinocyte PAFR. The present studies used both pharmacologic and genetic approaches in cells and mice to determine that both the PAFR and enzyme acid sphingomyelinase (aSMase) were necessary for UVB-MVP generation. Discovery that the calcium-sensing receptor is a keratinocyte-selective MVP marker allowed us to determine that UVB-MVP leaving the keratinocyte can be found systemically in mice and in human subjects following UVB. Moreover, UVB-MVP contain bioactive contents including PAFR agonists which allow them to serve as effectors for UVB downstream effects, in particular UVB-mediated systemic immunosuppression.

Authors

Langni Liu, Azeezat A. Awoyemi, Katherine E. Fahy, Pariksha Thapa, Christina Borchers, Benita Y. Wu, Cameron L. McGlone, Benjamin Schmeusser, Zafer Sattouf, Craig A. Rohan, Amy R. Williams, Elizabeth E. Cates, Christina Knisely, Lisa E. Kelly, Ji C. Bihl, David R. Cool, Ravi P. Sahu, Jinju Wang, Yanfang Chen, Christine M. Rapp, Michael G. Kemp, R. Michael Johnson, Jeffrey B. Travers

×
  • ← Previous
  • 1
  • 2
  • …
  • 119
  • 120
  • 121
  • …
  • 175
  • 176
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts