Significant progress in the last 15 years has transformed the field of lymphatic vasculature research into a boom area. The relatively recent identification of specific growth factors and molecular markers that distinguish endothelial cells of the lymphatic and blood vasculature lineages were pivotal for this development. Given the almost ubiquitous distribution of lymphatic vessels in most organs, it is not surprising that this type of vasculature is actively or passively involved in a large number of human diseases. The reviews in this series aim to describe a number of emerging areas in lymphatic biology, including mechanisms that mediate lymphangiogenesis, the development of mammalian lymphatic vasculature, the genetics of lymphatic anomalies, new technologies for studying the lymphatic vasculature, and the role of lymphatics in disease, including lymphedema and cancer, and physiological processes, such as inflammation and immunity. Cover image credit: K.Pichler/CeMM/MedUni Wien/Josephinum (www.josephinum.ac.at).
Lymphatic vessels constitute a ubiquitous countercurrent system to the blood vasculature that returns interstitial fluid, salts, small molecules, resorbed fat, and cells to the bloodstream. They serve as conduits to lymph nodes and are essential for multiple physiologic activities. However, they are also hijacked by cancer cells to establish initial lymph node metastases, as well as by infectious agents and parasites. Despite these obvious important functions in human pathologies, a more detailed understanding of the molecular mechanisms involved in the regulation of the lymphatic vasculature has trailed that of the blood vasculature for many years, mainly because critical specific characteristics of lymphatic endothelial cells were discovered only recently. In this Review series, several major aspects of the active and passive involvement of the lymphatic vasculature in human disease and physiology are presented, with a focus on translational findings.
Dontscho Kerjaschki
Lymphangiogenesis, the growth of lymphatic vessels, is essential in embryonic development. In adults, it is involved in many pathological processes such as lymphedema, inflammatory diseases, and tumor metastasis. Advances during the past decade have dramatically increased the knowledge of the mechanisms of lymphangiogenesis, including the roles of transcription factors, lymphangiogenic growth factors and their receptors, and intercellular and intracellular signaling cascades. Strategies based on these mechanisms are being tested in the treatment of various human diseases such as cancer, lymphedema, and tissue allograft rejection. This Review summarizes the recent progress on lymphangiogenic mechanisms and their applications in disease treatment.
Wei Zheng, Aleksanteri Aspelund, Kari Alitalo
The two vascular systems of our body are the blood and lymphatic vasculature. Our understanding of the cellular and molecular processes controlling the development of the lymphatic vasculature has progressed significantly in the last decade. In mammals, this is a stepwise process that starts in the embryonic veins, where lymphatic EC (LEC) progenitors are initially specified. The differentiation and maturation of these progenitors continues as they bud from the veins to produce scattered primitive lymph sacs, from which most of the lymphatic vasculature is derived. Here, we summarize our current understanding of the key steps leading to the formation of a functional lymphatic vasculature.
Ying Yang, Guillermo Oliver
Lymphatic anomalies include a variety of developmental and/or functional defects affecting the lymphatic vessels: sporadic and familial forms of primary lymphedema, secondary lymphedema, chylothorax and chylous ascites, lymphatic malformations, and overgrowth syndromes with a lymphatic component. Germline mutations have been identified in at least 20 genes that encode proteins acting around VEGFR-3 signaling but also downstream of other tyrosine kinase receptors. These mutations exert their effects via the RAS/MAPK and the PI3K/AKT pathways and explain more than a quarter of the incidence of primary lymphedema, mostly of inherited forms. More common forms may also result from multigenic effects or post-zygotic mutations. Most of the corresponding murine knockouts are homozygous lethal, while heterozygotes are healthy, which suggests differences in human and murine physiology and the influence of other factors.
Pascal Brouillard, Laurence Boon, Miikka Vikkula
The lymphatic circulatory system has diverse functions in lipid absorption, fluid homeostasis, and immune surveillance and responds dynamically when presented with infection, inflammation, altered hemodynamics, and cancer. Visualization of these dynamic processes in human disease and animal models of disease is key to understanding the contributory role of the lymphatic circulatory system in disease and to devising effective therapeutic strategies. Longitudinal, non-destructive, and repeated imaging is necessary to expand our understanding of disease progression and regression in basic science and clinical investigations. Herein we summarize recent advances in in vivo lymphatic imaging employing magnetic resonance, computed tomography, lymphoscintigraphy, and emerging optical techniques with respect to their contributory roles in both basic science and clinical research investigations.
Eva M. Sevick-Muraca, Sunkuk Kwon, John C. Rasmussen
The lymphatic system is fundamentally important to cardiovascular disease, infection and immunity, cancer, and probably obesity — the four major challenges in healthcare in the 21st century. This Review will consider the manner in which new knowledge of lymphatic genes and molecular mechanisms has demonstrated that lymphatic dysfunction should no longer be considered a passive bystander in disease but rather an active player in many pathological processes and, therefore, a genuine target for future therapeutic developments. The specific roles of the lymphatic system in edema, genetic aspects of primary lymphedema, infection (cellulitis/erysipelas), Crohn’s disease, obesity, cancer, and cancer-related lymphedema are highlighted.
Peter S. Mortimer, Stanley G. Rockson
Malignant tumors release growth factors such as VEGF-C to induce lymphatic vessel expansion (lymphangiogenesis) in primary tumors and in draining sentinel LNs, thereby promoting LN metastasis. Surprising recent evidence suggests that lymphatic vessels do not merely represent passive channels for tumor spread, but that they may actively promote tumor cell recruitment to LNs, cancer stem cell survival, and immune modulation. New imaging approaches allow the sensitive visualization of the earliest LN metastases and the quantitative, noninvasive measurement of the function of tumor-draining lymphatic vessels, with potential applications in the development of biomarkers for prognosis and measurement of therapeutic response.
Sinem Karaman, Michael Detmar
The life cycles of VLDLs and most LDLs occur within plasma. By contrast, the role of HDLs in cholesterol transport from cells requires that they readily gain access to and function within interstitial fluid. Studies of lymph derived from skin, connective tissue, and adipose tissue have demonstrated that particles as large as HDLs require transport through lymphatics to return to the bloodstream during reverse cholesterol transport. Targeting HDL for therapeutic purposes will require understanding its biology in the extravascular compartment, within the interstitium and lymph, in health and disease, and we herein review the processes that mediate the transport of HDLs and chylomicrons through the lymphatic vasculature.
Gwendalyn J. Randolph, Norman E. Miller
Lymphangiogenesis and lymphatic vessel remodeling are complex biological processes frequently observed during inflammation. Accumulating evidence indicates that inflammation-associated lymphangiogenesis (IAL) is not merely an endpoint event, but actually a phenomenon actively involved in the pathophysiology of various inflammatory disorders. The VEGF-C/VEGFR-3 and VEGF-A/VEGF-R2 signaling pathways are two of the best-studied pathways in IAL. Methods targeting these molecules, such as prolymphangiogenic or antilymphatic treatments, were found to be beneficial in various preclinical and/or clinical studies. This Review focuses on the most recent achievements in the fields of lymphatic biology relevant to inflammatory conditions. Additionally, preclinical and clinical therapies that modulate IAL are summarized.
Honsoul Kim, Raghu P. Kataru, Gou Young Koh
Emerging research on the roles of stromal cells in modulating adaptive immune responses has included a new focus on lymphatic endothelial cells (LECs). LECs are presumably the first cells that come into direct contact with peripheral antigens, cytokines, danger signals, and immune cells travelling from peripheral tissues to lymph nodes. LECs can modulate dendritic cell function, present antigens to T cells on MHC class I and MHC class II molecules, and express immunomodulatory cytokines and receptors, which suggests that their roles in adaptive immunity are far more extensive than previously realized. This Review summarizes the emergent evidence that LECs are important in maintaining peripheral tolerance, limiting and resolving effector T cell responses, and modulating leukocyte function.
Catherine M. Card, Shann S. Yu, Melody A. Swartz
Tertiary lymphoid organs (TLOs) are accumulations of lymphoid cells in chronic inflammation that resemble LNs in their cellular content and organization, high endothelial venules, and lymphatic vessels (LVs). Although acute inflammation can result in defective LVs, TLO LVs appear to function normally in that they drain fluid and transport cells that respond to chemokines and sphingosine-1-phosphate (S1P) gradients. Molecular regulation of TLO LVs differs from lymphangiogenesis in ontogeny with a dependence on cytokines and hematopoietic cells. Ongoing work to elucidate the function and molecular regulation of LVs in TLOs is providing insight into therapies for conditions as diverse as lymphedema, autoimmunity, and cancer.
Nancy H. Ruddle