Cancers derived from lymphoid cells, including B cell and T cell lineages, often exhibit aberrant processes of lymphoid differentiation or activation, resulting in a broad spectrum of diverse and complex lymphomas and leukemias. The reviews in this series focus on recent progress in selected lymphoid malignancies, with an emphasis on the molecular mechanisms and genetic alterations that drive oncogenesis, including new mutations identified by genome-wide analyses. These newly identified genes are improving our mechanistic understanding of how these cancers develop and progress, and provide new opportunities for therapeutic intervention. Cover image credit: Aaron Polliack / Photo Researchers, Inc.
The lymphoid tissues, including both the B and T cell lineages, are characterized by a unique level of biological complexity due to the anatomical organization of functionally distinct cell subpopulations and complex processes of genetic alteration required to generate immune responses. Not surprisingly, this physiological diversity and complexity is mirrored by the broad spectrum of malignancies derived from lymphocytes. The articles in this Review Series highlight recent progress in selected common lymphoid malignancies, with a focus on the genetic alterations that drive malignant transformation, including those identified by genome-wide analyses. These genetic alterations represent the basis from which cellular pathways of therapeutic relevance can be identified, studied, and eventually targeted.
Riccardo Dalla-Favera
T cell acute lymphoblastic leukemias (T-ALLs) arise from the malignant transformation of hematopoietic progenitors primed toward T cell development, as result of a multistep oncogenic process involving constitutive activation of NOTCH signaling and genetic alterations in transcription factors, signaling oncogenes, and tumor suppressors. Notably, these genetic alterations define distinct molecular groups of T-ALL with specific gene expression signatures and clinicobiological features. This review summarizes recent advances in our understanding of the molecular genetics of T-ALL.
Pieter Van Vlierberghe, Adolfo Ferrando
B-precursor acute lymphoblastic leukemia (B-ALL) is the most common childhood tumor and the leading cause of cancer-related death in children and young adults. The majority of B-ALL cases are aneuploid or harbor recurring structural chromosomal rearrangements that are important initiating events in leukemogenesis but are insufficient to explain the biology and heterogeneity of disease. Recent studies have used microarrays and sequencing to comprehensively identify all somatic genetic alterations in acute lymphoblastic leukemia (ALL). These studies have identified cryptic or submicroscopic genetic alterations that define new ALL subtypes, cooperate with known chromosomal rearrangements, and influence prognosis. This article reviews these advances, discusses results from ongoing second-generation sequencing studies of ALL, and highlights challenges and opportunities for future genetic profiling approaches.
Charles G. Mullighan
Mantle cell lymphoma is a B cell malignancy in which constitutive dysregulation of cyclin D1 and the cell cycle, disruption of DNA damage response pathways, and activation of cell survival mechanisms contribute to oncogenesis. A small number of tumors lack cyclin D1 overexpression, suggesting that its dysregulation is always not required for tumor initiation. Some cases have hypermutated IGHV and stable karyotypes, a predominant nonnodal disease, and an indolent clinical evolution, which suggests that they may correspond to distinct subtypes of the disease. In this review, we discuss the molecular pathways that contribute to pathogenesis, and how improved understanding of these molecular mechanisms offers new perspectives for the treatment of patients.
Pedro Jares, Dolors Colomer, Elias Campo
The hallmark t(14;18)(q32;q21) in follicular lymphoma (FL) results in constitutive overexpression of the BCL2 protein, allowing B cells to abrogate the default germinal center apoptotic program. Most tumors are characterized by recurrent secondary genetic alterations including genomic gains, losses, and mutations, some providing a growth advantage, including alterations in MLL2, EPHA7, TNFRSF14, and EZH2. The sequence in which these events occur and how they contribute to progression and ultimately to transformation is unclear. Lastly, crosstalk between neoplastic B cells and non-neoplastic immune and stromal cells in the microenvironment plays an important role in sustaining tumor cell growth, cultivating immune privilege, and promoting transformation.
Robert Kridel, Laurie H. Sehn, Randy D. Gascoyne
Chronic lymphocytic leukemia (CLL) is the most common leukemia in adults. Here, we highlight important genetic alterations that contribute to tumorigenesis, clinical progression, and chemorefractoriness of CLL. All CLLs share a common gene expression profile that suggests derivation from antigen-experienced B cells, a model supported by frequent B cell receptor repertoire skewing and stereotypy. Many CLL patients carry mutated immunoglobulin heavy-chain variable genes, while approximately 35% harbor unmutated IgV genes, which are associated with an inferior outcome. Deletion of chromosome 13q14, which is the most common genetic mutation at diagnosis, is considered an initiating lesion that frequently results in disruption of the tumor suppressor locus DLEU2/MIR15A/MIR16A. Next-generation sequencing has revealed additional recurrent genetic lesions that are implicated in CLL pathogenesis. These advancements in the molecular genetics of CLL have important implications for stratifying treatment based on molecular prognosticators and for targeted therapy.
Gianluca Gaidano, Robin Foà, Riccardo Dalla-Favera
Hodgkin lymphoma (HL), a B cell–derived cancer, is one of the most common lymphomas. In HL, the tumor cells — Hodgkin and Reed-Sternberg (HRS) cells — are usually very rare in the tissue. Although HRS cells are derived from mature B cells, they have largely lost their B cell phenotype and show a very unusual co-expression of markers of various hematopoietic cell types. HRS cells show deregulated activation of multiple signaling pathways and transcription factors. The activation of these pathways and factors is partly mediated through interactions of HRS cells with various other types of cells in the microenvironment, but also through genetic lesions. The transforming events involved in the pathogenesis of HL are only partly understood, but mutations affecting the NF-κB and JAK/STAT pathways are frequent. The dependency of HRS cells on microenvironmental interactions and deregulated signaling pathways may offer novel strategies for targeted therapies.
Ralf Küppers, Andreas Engert, Martin-Leo Hansmann
Peripheral T cell lymphomas (PTCLs) are heterogeneous neoplasms and represent about 12% of all lymphoid malignancies. They are often regarded as “orphan diseases,” a designation that does not reflect their real incidence but rather signifies the difficulties encountered in their classification, diagnosis, and treatment. Here we revise the current understanding of the pathobiological characteristics of the most common nodal PTCLs by focusing on the contribution given by high-throughput technologies and the identification of potential therapeutic targets proposed by translational studies.
Stefano A. Pileri, Pier Paolo Piccaluga
Multiple myeloma is a monoclonal tumor of plasma cells, and its development is preceded by a premalignant tumor with which it shares genetic abnormalities, including universal dysregulation of the cyclin D/retinoblastoma (cyclin D/RB) pathway. A complex interaction with the BM microenvironment, characterized by activation of osteoclasts and suppression of osteoblasts, leads to lytic bone disease. Intratumor genetic heterogeneity, which occurs in addition to intertumor heterogeneity, contributes to the rapid emergence of drug resistance in high-risk disease. Despite recent therapeutic advances, which have doubled the median survival time, myeloma continues to be a mostly incurable disease. Here we review the current understanding of myeloma pathogenesis and insight into new therapeutic strategies provided by animal models and genetic screens.
W. Michael Kuehl, P. Leif Bergsagel