Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

News Round Up: August 10, 2014

Several outlets report on “Ion channel TRPV1-dependent activation of PTP1B suppresses EGFR-associated intestinal tumorigenesis” by Petrus R. de Jong and colleagues at the University of California at San Diego.

Read how this study suggests that capsaicin may limit intestinal tumorigenesis: Time, New York Daily News, Daily Mail, Business Standard, The Free Press Journal, Science World Report, Deccan Chronicle, Tech Times, Bioscience Technology, and South China Morning Post.

Multiple sources cover "Sexually dimorphic RB inactivation underlies mesenchymal glioblastoma prevalence in males" by Tao Sun and colleagues at Washington University School of Medicine.

This study provides an explanation for why some types of brain tumors are more common in men: Science World Report, International Business Times, Headlines and Global News, Science 2.0, French Tribune, Delhi Daily News, RTT News

Various media sources have stories on "PPARγ ablation sensitizes proopiomelanocortin neurons to leptin during high-fat feeding" by Lihong Long and colleagues at Yale University.

Read more about how proopiomelanocortin-expressing neurons regulate whole-body energy balance: Nature World News, FoxCT, Science 2.0, Headlines and Global News, International Business Times, Tech Times, and Fars News.

Published August 10, 2014, by Corinne Williams

In the News

Related articles

Ion channel TRPV1-dependent activation of PTP1B suppresses EGFR-associated intestinal tumorigenesis
Petrus R. de Jong, … , Maripat Corr, Eyal Raz
Petrus R. de Jong, … , Maripat Corr, Eyal Raz
Published August 1, 2014
Citation Information: J Clin Invest. 2014;124(9):3793-3806. https://doi.org/10.1172/JCI72340.
View: Text | PDF
Research Article Oncology Article has an altmetric score of 73

Ion channel TRPV1-dependent activation of PTP1B suppresses EGFR-associated intestinal tumorigenesis

  • Text
  • PDF
Abstract

The intestinal epithelium has a high rate of turnover, and dysregulation of pathways that regulate regeneration can lead to tumor development; however, the negative regulators of oncogenic events in the intestinal epithelium are not fully understood. Here we identified a feedback loop between the epidermal growth factor receptor (EGFR), a known mediator of proliferation, and the transient receptor potential cation channel, subfamily V, member 1 (TRPV1), in intestinal epithelial cells (IECs). We found that TRPV1 was expressed by IECs and was intrinsically activated upon EGFR stimulation. Subsequently, TRPV1 activation inhibited EGFR-induced epithelial cell proliferation via activation of Ca2+/calpain and resulting activation of protein tyrosine phosphatase 1B (PTP1B). In a murine model of multiple intestinal neoplasia (ApcMin/+ mice), TRPV1 deficiency increased adenoma formation, and treatment of these animals with an EGFR kinase inhibitor reversed protumorigenic phenotypes, supporting a functional association between TRPV1 and EGFR signaling in IECs. Administration of a TRPV1 agonist suppressed intestinal tumorigenesis in ApcMin/+ mice, similar to — as well as in conjunction with — a cyclooxygenase-2 (COX-2) inhibitor, which suggests that targeting both TRPV1 and COX-2 has potential as a therapeutic approach for tumor prevention. Our findings implicate TRPV1 as a regulator of growth factor signaling in the intestinal epithelium through activation of PTP1B and subsequent suppression of intestinal tumorigenesis.

Authors

Petrus R. de Jong, Naoki Takahashi, Alexandra R. Harris, Jihyung Lee, Samuel Bertin, James Jeffries, Michael Jung, Jen Duong, Amy I. Triano, Jongdae Lee, Yaron Niv, David S. Herdman, Koji Taniguchi, Chang-Whan Kim, Hui Dong, Lars Eckmann, Stephanie M. Stanford, Nunzio Bottini, Maripat Corr, Eyal Raz

×

Sexually dimorphic RB inactivation underlies mesenchymal glioblastoma prevalence in males
Tao Sun, … , Rajarshi Sengupta, Joshua B. Rubin
Tao Sun, … , Rajarshi Sengupta, Joshua B. Rubin
Published August 1, 2014
Citation Information: J Clin Invest. 2014;124(9):4123-4133. https://doi.org/10.1172/JCI71048.
View: Text | PDF
Research Article Oncology Article has an altmetric score of 77

Sexually dimorphic RB inactivation underlies mesenchymal glioblastoma prevalence in males

  • Text
  • PDF
Abstract

The prevalence of brain tumors in males is common but unexplained. While sex differences in disease are typically mediated through acute sex hormone actions, sex-specific differences in brain tumor rates are comparable at all ages, suggesting that factors other than sex hormones underlie this discrepancy. We found that mesenchymal glioblastoma (Mes-GBM) affects more males as the result of cell-intrinsic sexual dimorphism in astrocyte transformation. We used astrocytes from neurofibromin-deficient (Nf1–/–) mice expressing a dominant-negative form of the tumor suppressor p53 (DNp53) and treated them with EGF as a Mes-GBM model. Male Mes-GBM astrocytes exhibited greater growth and colony formation compared with female Mes-GBM astrocytes. Moreover, male Mes-GBM astrocytes underwent greater tumorigenesis in vivo, regardless of recipient mouse sex. Male Mes-GBM astrocytes exhibited greater inactivation of the tumor suppressor RB, higher proliferation rates, and greater induction of a clonogenic, stem-like cell population compared with female Mes-GBM astrocytes. Furthermore, complete inactivation of RB and p53 in Mes-GBM astrocytes resulted in equivalent male and female tumorigenic transformation, indicating that intrinsic differences in RB activation are responsible for the predominance of tumorigenic transformation in male astrocytes. Together, these results indicate that cell-intrinsic sex differences in RB regulation and stem-like cell function may underlie the predominance of GBM in males.

Authors

Tao Sun, Nicole M. Warrington, Jingqin Luo, Michael D. Brooks, Sonika Dahiya, Steven C. Snyder, Rajarshi Sengupta, Joshua B. Rubin

×

PPARγ ablation sensitizes proopiomelanocortin neurons to leptin during high-fat feeding
Lihong Long, … , Tamas L. Horvath, Sabrina Diano
Lihong Long, … , Tamas L. Horvath, Sabrina Diano
Published August 1, 2014
Citation Information: J Clin Invest. 2014;124(9):4017-4027. https://doi.org/10.1172/JCI76220.
View: Text | PDF
Research Article Metabolism Article has an altmetric score of 82

PPARγ ablation sensitizes proopiomelanocortin neurons to leptin during high-fat feeding

  • Text
  • PDF
Abstract

Activation of central PPARγ promotes food intake and body weight gain; however, the identity of the neurons that express PPARγ and mediate the effect of this nuclear receptor on energy homeostasis is unknown. Here, we determined that selective ablation of PPARγ in murine proopiomelanocortin (POMC) neurons decreases peroxisome density, elevates reactive oxygen species, and induces leptin sensitivity in these neurons. Furthermore, ablation of PPARγ in POMC neurons preserved the interaction between mitochondria and the endoplasmic reticulum, which is dysregulated by HFD. Compared with control animals, mice lacking PPARγ in POMC neurons had increased energy expenditure and locomotor activity; reduced body weight, fat mass, and food intake; and improved glucose metabolism when exposed to high-fat diet (HFD). Finally, peripheral administration of either a PPARγ activator or inhibitor failed to affect food intake of mice with POMC-specific PPARγ ablation. Taken together, our data indicate that PPARγ mediates cellular, biological, and functional adaptations of POMC neurons to HFD, thereby regulating whole-body energy balance.

Authors

Lihong Long, Chitoku Toda, Jing Kwon Jeong, Tamas L. Horvath, Sabrina Diano

×
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Picked up by 9 news outlets
Blogged by 1
Posted by 5 X users
Mentioned by 1 weibo users
On 4 Facebook pages
Mentioned in 5 Google+ posts
Reddited by 1
Highlighted by 1 platforms
138 readers on Mendeley
See more details
Picked up by 10 news outlets
Posted by 9 X users
Mentioned by 3 weibo users
On 7 Facebook pages
68 readers on Mendeley
See more details
Picked up by 9 news outlets
Blogged by 3
Posted by 4 X users
On 1 Facebook pages
Reddited by 1
64 readers on Mendeley
See more details