Our new feature, “First Author Perspectives,” provides insight into the research process underlying a recently published manuscript.
About half of all melanomas harbor a mutation that results in a constitutively active BRAF kinase mutant (BRAFV600E/K) that can be selectively inhibited by targeted BRAF inhibitors (BRAFis). While patients treated with BRAFis initially exhibit measurable clinical improvement, the majority of patients eventually develop drug resistance and relapse. Here, we observed marked elevation of
Jamie N. Anastas, Rima M. Kulikauskas, Tigist Tamir, Helen Rizos, Georgina V. Long, Erika M. von Euw, Pei-Tzu Yang, Hsiao-Wang Chen, Lauren Haydu, Rachel A. Toroni, Olivia M. Lucero, Andy J. Chien, Randall T. Moon
Metabolic disorders, including obesity, diabetes, and cardiovascular disease, are widespread in Westernized nations. Gut microbiota composition is a contributing factor to the susceptibility of an individual to the development of these disorders; therefore, altering a person’s microbiota may ameliorate disease. One potential microbiome-altering strategy is the incorporation of modified bacteria that express therapeutic factors into the gut microbiota. For example,
Zhongyi Chen, Lilu Guo, Yongqin Zhang, Rosemary L. Walzem, Julie S. Pendergast, Richard L. Printz, Lindsey C. Morris, Elena Matafonova, Xavier Stien, Li Kang, Denis Coulon, Owen P. McGuinness, Kevin D. Niswender, Sean S. Davies
Drugs currently approved to coat stents used in percutaneous coronary interventions do not discriminate between proliferating vascular smooth muscle cells (VSMCs) and endothelial cells (ECs). This lack of discrimination delays reendothelialization and vascular healing, increasing the risk of late thrombosis following angioplasty. We developed a microRNA-based (miRNA-based) approach to inhibit proliferative VSMCs, thus preventing restenosis, while selectively promoting reendothelialization and preserving EC function. We used an adenoviral (Ad) vector that encodes cyclin-dependent kinase inhibitor p27Kip1 (p27) with target sequences for EC-specific miR-126-3p at the 3′ end (Ad-p27-126TS). Exogenous p27 overexpression was evaluated in vitro and in a rat arterial balloon injury model following transduction with Ad-p27-126TS, Ad-p27 (without miR-126 target sequences), or Ad-GFP (control). In vitro, Ad-p27-126TS protected the ability of ECs to proliferate, migrate, and form networks. At 2 and 4 weeks after injury, Ad-p27-126TS–treated animals exhibited reduced restenosis, complete reendothelialization, reduced hypercoagulability, and restoration of the vasodilatory response to acetylcholine to levels comparable to those in uninjured vessels. By incorporating miR-126-3p target sequences to leverage endogenous EC-specific miR-126, we overexpressed exogenous p27 in VSMCs, while selectively inhibiting p27 overexpression in ECs. Our proof-of-principle study demonstrates the potential of using a miRNA-based strategy as a therapeutic approach to specifically inhibit vascular restenosis while preserving EC function.
Gaetano Santulli, Anetta Wronska, Kunihiro Uryu, Thomas G. Diacovo, Melanie Gao, Steven O. Marx, Jan Kitajewski, Jamie M. Chilton, Kemal Marc Akat, Thomas Tuschl, Andrew R. Marks, Hana Totary-Jain