Nature Reviews Drug Discovery highlights "Inhibition of the TRPC5 ion channel protects the kidney filter" by Anna Greka and colleagues.
Multiple sources report on "Taxonomy of breast cancer based on normal cell phenotype predicts outcome" by Sandro Santagata and colleagues, including Nature Medicine's Spoonful of Medicine blog, Science World Report, and the Guardian Liberty Voice.
The Cyrpess Creek Mirror of Houston features "Evaluation of teriparatide treatment in adults with osteogenesis imperfecta" by Eric Orwoll and colleagues.
An intact kidney filter is vital to retention of essential proteins in the blood and removal of waste from the body. Damage to the filtration barrier results in albumin loss in the urine, a hallmark of cardiovascular disease and kidney failure. Here we found that the ion channel TRPC5 mediates filtration barrier injury. Using
Thomas Schaldecker, Sookyung Kim, Constantine Tarabanis, Dequan Tian, Samy Hakroush, Philip Castonguay, Wooin Ahn, Hanna Wallentin, Hans Heid, Corey R. Hopkins, Craig W. Lindsley, Antonio Riccio, Lisa Buvall, Astrid Weins, Anna Greka
Accurate classification is essential for understanding the pathophysiology of a disease and can inform therapeutic choices. For hematopoietic malignancies, a classification scheme based on the phenotypic similarity between tumor cells and normal cells has been successfully used to define tumor subtypes; however, use of normal cell types as a reference by which to classify solid tumors has not been widely emulated, in part due to more limited understanding of epithelial cell differentiation compared with hematopoiesis. To provide a better definition of the subtypes of epithelial cells comprising the breast epithelium, we performed a systematic analysis of a large set of breast epithelial markers in more than 15,000 normal breast cells, which identified 11 differentiation states for normal luminal cells. We then applied information from this analysis to classify human breast tumors based on normal cell types into 4 major subtypes, HR0–HR3, which were differentiated by vitamin D, androgen, and estrogen hormone receptor (HR) expression. Examination of 3,157 human breast tumors revealed that these HR subtypes were distinct from the current classification scheme, which is based on estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. Patient outcomes were best when tumors expressed all 3 hormone receptors (subtype HR3) and worst when they expressed none of the receptors (subtype HR0). Together, these data provide an ontological classification scheme associated with patient survival differences and provides actionable insights for treating breast tumors.
Sandro Santagata, Ankita Thakkar, Ayse Ergonul, Bin Wang, Terri Woo, Rong Hu, J. Chuck Harrell, George McNamara, Matthew Schwede, Aedin C. Culhane, David Kindelberger, Scott Rodig, Andrea Richardson, Stuart J. Schnitt, Rulla M. Tamimi, Tan A. Ince
Eric S. Orwoll, Jay Shapiro, Sandra Veith, Ying Wang, Jodi Lapidus, Chaim Vanek, Jan L. Reeder, Tony M. Keaveny, David C. Lee, Mary A. Mullins, Sandesh C.S. Nagamani, Brendan Lee