In situ cancer vaccines are under active clinical investigation, given their reported ability to eradicate both local and disseminated malignancies. Intratumoral vaccine administration is thought to activate a T cell–mediated immune response, which begins in the treated tumor and cascades systemically. In this study, we describe a PET tracer (64Cu-DOTA-AbOX40) that enabled noninvasive and longitudinal imaging of OX40, a cell-surface marker of T cell activation. We report the spatiotemporal dynamics of T cell activation following in situ vaccination with CpG oligodeoxynucleotide in a dual tumor–bearing mouse model. We demonstrate that OX40 imaging was able to predict tumor responses on day 9 after treatment on the basis of tumor tracer uptake on day 2, with greater accuracy than both anatomical and blood-based measurements. These studies provide key insights into global T cell activation following local CpG treatment and indicate that 64Cu-DOTA-AbOX40 is a promising candidate for monitoring clinical cancer immunotherapy strategies.
Israt S. Alam, Aaron T. Mayer, Idit Sagiv-Barfi, Kezheng Wang, Ophir Vermesh, Debra K. Czerwinski, Emily M. Johnson, Michelle L. James, Ronald Levy, Sanjiv S. Gambhir
The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.