By integrating an agonist satiety signal, provided by alpha–melanocyte-stimulating hormone (α-MSH), and an antagonist signal, provided by agouti-related protein (AGRP), the melanocortin-4 receptor (MC4-R) is a key element in the hypothalamic control of food intake. Inactivation of the gene encoding this G protein–coupled receptor causes obesity in mice. In humans, frameshift mutations in MC4-R cause an early-onset dominant form of obesity in two families. In this study we find a high frequency (4%) of rare heterozygous MC4-R mutations in a large population of morbidly obese patients. No such mutations were found in controls. By analyzing the phenotypes of the probands carrying these mutations, we demonstrate that these patients display a common, nonsyndromic form of obesity. Interestingly, functional analysis of the mutant receptors indicates that obesity-associated defects in MC4-R range from loss of function to constitutive activation. Transmission of these mutations in the families of the carriers indicates a variable expressivity that is not related to the functional severity of the mutations. This variable expressivity of MC4-R–associated obesity is not due to variations in genes for α-MSH or AGRP. Taken together, these results demonstrate that MC4-R mutations are a frequent but heterogeneous genetic cause of morbid obesity.
Christian Vaisse, Karine Clement, Emmanuelle Durand, Serge Hercberg, Bernard Guy-Grand, Philippe Froguel
The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.